K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2024

Gọi d = ƯCLN(2n - 3; n - 2)

⇒ (2n - 3) ⋮ d và (n - 2) ⋮ d

*) (n - 2) ⋮ d

⇒ 2(n - 2) ⋮ d

⇒ (2n - 4) ⋮ d

Mà (2n - 3) ⋮ d

⇒ [2n - 3 - (2n - 4)] ⋮ d

⇒ (2n - 3 - 2n + 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy A là phân số tối giản

Chỉ có A=\(\dfrac{2n-3}{n-2}\) thì mới có điều kiện n≠2 bạn nhé.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

10 tháng 9 2020

Trả lời nhanh giúp mình với!

10 tháng 9 2020

B1:

A=1/3+1/3^2+1/3^3+...+1/3^100

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99

3A - A = 1 - 1/3^100 = 2A

A = (1 - 1/3^100)/2

B2:

a) 

để A nguyên <=> n + 3 ⋮ n - 5

=> n - 5 + 8 ⋮ n - 5

=> 8 ⋮ n - 5

=> ...

b) 

để B nguyên <=> 1 - 2n ⋮ n + 3

=> 4 - 2n - 3 ⋮ n + 3

=> 4 - 2(n + 3) ⋮ n + 3

=> 4 ⋮ n + 3

=> ...

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

15 tháng 8 2017
nhanh lên các bạn