K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 3 2024

Lời giải:

$10A=\frac{10^{13}+10}{10^{13}+1}=1+\frac{9}{10^{13}+1}> 1+\frac{9}{10^{14}+1}=\frac{10^{14}+10}{10^{14}+1}=10B$
$\Rightarrow A> B$

AH
Akai Haruma
Giáo viên
18 tháng 3 2024

Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc đề của bạn dễ hiểu hơn nhé.

a: -15/37>-25/37

b: -13/21=-26/42

-9/14=-27/42

mà -26>-42

nên -13/21>-9/14

c: -49/-63=7/9

56/80=7/10

=>-49/-63>56/80

d: 3/14=1-11/14

4/15=1-11/15

mà 11/14>11/15

nên 3/14<4/15

18 tháng 12 2018

\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(10B=\frac{10\left(10^{12}-1\right)}{10^{13}-1}=\frac{10^{13}-10}{10^{13}-1}=\frac{10^{13}-1-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\)

Vì \(10^{13}-1>10^{12}-1\Rightarrow\frac{9}{10^{13}-1}< \frac{9}{10^{12}-1}\Rightarrow-\frac{9}{10^{13}-1}>-\frac{9}{10^{12}-1}\)

\(\Rightarrow1-\frac{9}{10^{13}-1}>1-\frac{9}{10^{12}-1}\Rightarrow10B>10A\Rightarrow B>A\)

\(A=\frac{10^{11}-1}{10^{12}-1}\Leftrightarrow10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(B=\frac{10^{12}-1}{10^{13}-1}\Leftrightarrow10B=\frac{10^{13}-10}{10^{13}-1}=\frac{10^{13}-1-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\)

\(\text{Vì }1-\frac{9}{10^{12}-1}< 1-\frac{9}{10^{13}-1}\Rightarrow10A< 10B\)

\(\Rightarrow A< B\)

11 tháng 8 2019

                                                       Bài giải

Ta có : 

\(\frac{13}{14}=1-\frac{1}{14}\)

\(\frac{12}{13}=1-\frac{1}{13}\)

Vì \(\frac{1}{14}< \frac{1}{13}\) \(\Rightarrow\text{ }\frac{13}{14}>\frac{12}{13}\)

11 tháng 8 2019

b,                                          Bài giải

\(A=\frac{10^{10}+5}{10^{10}-1}=\frac{10^{10}-1+6}{10^{10}-1}=\frac{10^{10}-1}{10^{10}-1}+\frac{6}{10^{10}-1}=1+\frac{6}{10^{10}-1}\)

\(B=\frac{10^{10}+4}{10^{10}-2}=\frac{10^{10}-2+6}{10^{10}-2}=\frac{10^{10}-2}{10^{10}-2}+\frac{6}{10^{10}-2}=1+\frac{6}{10^{10}-2}\)

Vì \(\frac{6}{10^{10}-1}>\frac{6}{10^{10}-2}\) \(\Rightarrow\text{ }\frac{10^{10}+5}{10^{10}-1}>\frac{10^{10}+4}{10^{10}-2}\)

                                              \(\Rightarrow\text{ }A>B\)

15 tháng 8 2015

a)Ta áp dụng tính chất sau:

Nếu a<b=>a/b<(a+k)/(b+k)     (k thuộc N*)

Vì 1013+1<1014+1=>B=1013+1/1014+1<1013+1+9/1014+1+9

=>B<1013+10/1014+10

=>B<10.(1012+1)/10.(1013+1)

=>B<1012+1/1013+1=A

=>B<A

b)Ta áp dụng tính chất sau:

Nếu a>b=>a/b>(a+k)/(b+k)     (k thuộc N*)

 Vì 102015+1>102014+1=>B=102015+1/102014+1>102015+1+99/102014+1+99

=>B>102015+100/102014+100

=>B>100.(102013+1)/100.(102012+1)

=>B>102013+1/102012+1=A

=>B>A

3 tháng 4 2016

Mình làm cho câu đầu tiên thôi, câu thứ hai cũng tương tự nha:

Ta có:

A.10 = \(\frac{10^{12}+10}{10^{12}+1}\)                                                     B.10 = \(\frac{10^{14}+10}{10^{14}+1}\)

=>A.10 = \(\frac{10^{12}+1+9}{10^{12}+1}\)                                              =>B.10 = \(\frac{10^{14}+1+9}{10^{14}+1}\)

=>A.10 = 1 + \(\frac{9}{10^{12}+1}\)                                             =>B.10 = 1 + \(\frac{9}{10^{14}+1}\)

=>A.10 > B.10

=>A > B

Vậy A > B

25 tháng 3 2022

em cần đáp án thui ạ, em cảm ơn nhiều lắm ạ

 

25 tháng 3 2022

> nhé

DD
27 tháng 6 2021

a) \(A=-\frac{13}{4}=-3-\frac{1}{4}< -3,B=\frac{17}{-6}>\frac{18}{-6}=-3\)

suy ra \(A< B\).

b) \(\frac{20^{10}+1}{20^{10}-1}=1+\frac{2}{20^{10}-1},\frac{20^{10}-1}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Có \(20^{10}-1>20^{10}-3>0\Leftrightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)

Suy ra \(A< B\).

27 tháng 6 2021

ông đi qua bà đi lại có ai biết làm không thì GIÚP MK VỚI

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

16 tháng 7 2016

Theo đầu bài ta có:
\(\hept{\begin{cases}A=\frac{10^{12}-1}{10^{13}-1}\Rightarrow10A=\frac{10^{13}-10}{10^{13}-1}=\frac{\left(10^{13}-1\right)-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\\B=\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=\frac{10^{11}+10}{10^{11}+1}=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\end{cases}}\)
Do \(1-\frac{9}{10^{13}-1}< 1< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\Rightarrow A< B\)