a/(2b+3c) +b/(2c+3a) + c/(2a+3b) >3/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =(a+b-2c) -(-a+b+c) -(2a-b-c)
= a+b-2c+a-b-c-2a+b+c
= b-2c
B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)
= -2a+b-c+b-2c-3a+5a+3c-b
= b-c
C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)
= a-b-2c-2b-3c+a+2a-3b
= -6b-5c
D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)
= 5a-3b+c+2a-3b+5-b+c-a
= 6a-7b+2c
\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)
\(=a+b-2c+a-b-c-2a+b+c=b-2c\)
\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)
\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)
\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)
\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)
\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)
\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
`a/(2b+3c) +b/(2c+3a) + c/(2a+3b) >=3/5`
Thiếu đk `a,b,c>0`
`a/(2b+3c) +b/(2c+3a) + c/(2a+3b)`
`=a^2/(2ab+3ac)+b^2/(2bc+3ab)+c^2/(2ac+3bc)`
Áp dụng BĐT cosi-schwart:
`a^2/(2ab+3ac)+b^2/(2bc+3ab)+c^2/(2ac+3bc)>=(a+b+c)^2/(5(ab+bc+ca))=(a^2+b^2+c^2+2ab+2bc+2ca)//(5(ab+bc+ca))`
Áp dụng cosi:`a^2+b^2+c^2>=ab+bc+ca`
`=>a^2/(2ab+3ac)+b^2/(2bc+3ab)+c^2/(2ac+3bc)>=(3(ab+bc+ca))/(5(ab+bc+ca))=3/5`
Dấu "=" xảy ra khi `a=b=c`