K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

  Cho a, b > 0. CMR: 1/a + 1/b ≥ 4/(a + b) (✽) 

Cách 1: Biến đổi tương đương 
(✽) ⇔ (a + b)/ab ≥ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế 
⇔ (a + b)² ≥ 4ab 
⇔ a² + 2ab + b² ≥ 4ab 
⇔ a² - 2ab + b² ≥ 0 
⇔ (a - b)² ≥ 0 luôn đúng ∀ a,b > 0 
--> đpcm 
Dấu " = " xảy ra ⇔ a = b 

P/s: Em ko chắc đâu nhé 

13 tháng 9 2017

\(\Rightarrow a,b\ge1\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\frac{a}{a}+\frac{a}{b}+\frac{b}{b}+\frac{b}{a}\)

\(=1+\frac{a}{b}+1+\frac{b}{a}\)

\(=2+\frac{a}{b}+\frac{b}{a}\)

\(=2+\frac{a.a}{b.a}+\frac{b.b}{b.a}\)

\(=2+\frac{a^2+b^2}{b.a}\)

\(=\frac{2.a.b}{a.b}+\frac{a^2+b^2}{b.a}\)

\(=\frac{2.a.b+a^2+b^2}{a.b}\)

\(=2+a^2+b^2\)


Nếu :\(a=1;b=1\)

\(\Rightarrow2+a^2+b^2\ge4\left(đpcm\right)\)

29 tháng 4 2020

1, Vì m > 2

\(\Rightarrow\) m - 2 > 2 - 2

\(\Rightarrow\) m(m - 2) > m(2 - 2)

\(\Rightarrow\) m2 - 2m > 0

a < 0; b < 0; a > b

\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))

Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn

Chúc bn học tốt!!

NV
3 tháng 5 2019

a/

Do \(\left\{{}\begin{matrix}a>2\Rightarrow\frac{1}{a}< \frac{1}{2}\\b>2\Rightarrow\frac{1}{b}< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)

\(\Rightarrow\frac{a+b}{ab}< 1\Rightarrow a+b< ab\) (đpcm)

b/ Ko rõ đề là gì

c/ \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

11 tháng 3 2017

a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3

b vì a>3 => a+2>3+2  =>a+2>5

c  vì m>n =>m-n>n-n=>m-n>0

đ vì m-n=0 =>m-n+n>0+n=>m>n

e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)

  vì -4>-5 => m-4>m-5 (2)

từ (1) và (2) =>m-5<n-4

25 tháng 6 2015

+TH1: có 1 số < 0 là a, 2 số lớn hơn 0 là b,c
=> bc > 0 mà a < 0
=> abc < 0 (trái giả thiết) => không tồn tại trường hợp này.

+TH2: 2 số <0 là b,c ; 1 số lớn hơn 0 là a.
=> bc > 0; b+c < 0; a > 0
a+b+c > 0 => a > -(b+c) > 0 => a.(b+c) < -(b+c).(b+c) (nhân cả 2 vế với 1 số < 0 là (b+c) nên đổi chiều)
=> ab+bc+ca=a(b+c) + bc < -(b+c)+ bc = -(b2+c2+bc) < 0 (do b2,c2,bc > 0) => trái giả thiết => không tồn tại trường hợp này.

+TH3: a,b,c < 0
=>abc < 0 => trái giả thiết => không tồn tại trường hợp này.

Vậy: a,b,c > 0

25 tháng 4 2019

sao th2 k suy ra ab>0 và c<0 nên abc<0 luôn

16 tháng 4 2017

sai đề nhé bạn

16 tháng 4 2017

Vậy thì bỏ chứng minh bất phương trình. Bạn giải phần dưới đi

6 tháng 11 2016

Vì abc>0 nên có ít nhất 1 số lớn hơn 0

Vai trò của a, b, c như nhua nên chọn a>0

TH1: b<0;c<0 \(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\\ \Rightarrow b^2+c^2+2bc< -ab-ac\\ bc+ab+ac< -b^2-c^2-bc=-\left(b^2+c^2+a^2\right)< 0\)(trái với giả thiết)

\(\Rightarrow\)TH2: b>0, c>0 thì a>0( luôn đúng)

Vậy a, b, c >0

 

15 tháng 2 2016

ôi dào !dễ ợt ! cô em mới cho học ngày hôm qua !k đi rùi em trình bày cho cách làm !