K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

a)  \(x\left(x-1\right)+2\left(x-2\right)-\left(9-x^2\right)\)

\(=\)\(x^2\)\(-\)\(x\)\(+\)\(2x\)\(-\)\(4\)\(-\)\(9\)\(+\)\(x^2\)

\(=\)\(x-13\)

b)  \(\left(x+3\right)\left(2x-1\right)-\left(3x+5\right)\left(2x-1\right)\)

\(=\)\(2x^2\)\(-\)\(x\)\(+\)\(6x\)\(-\)\(3\)\(-\)\(\left(6x^2-3x+10x-5\right)\)

\(=\)\(2x^2\)\(+\)\(5x\)\(-\)\(3\)\(-\)\(6x^2\)\(+\)\(3x\)\(-\)\(10x\)\(+\)\(5\)

\(=\)\(-4x^2\)\(-\)\(2x\)\(+\)\(2\)

Cách khác :

b)  \(\left(x+3\right)\left(2x-1\right)-\left(3x+5\right)\left(2x-1\right)\)

\(=\)\(\left(2x-1\right)\left(x+3-3x-5\right)\)

\(=\)\(\left(2x-1\right)\left(-2x-2\right)\)

\(=\)\(-4x^2\)\(-\)\(4x\)\(+\)\(2x\)\(+\)\(2\)

\(=\)\(-4x^2\)\(-\)\(2x\)\(+\)\(2\)

12 tháng 9 2017

a ) x ( x - 1 ) + 2 ( x - 2 ) - ( 9 + x^2 )

  =( x^2 - x ) + (  2x - 4 ) - ( 9 + x^2 )

  = x^2 - x + 2x - 4 - 9 - x^2

 = -x + 2x - 13

 = x - 13 

b ) ( x + 3 ) x ( 2x - 1 ) = ( x + 3 ) . ( 2x - 1 ) hay = ( x + 3 ) . x(2x - 1 ) 

a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)

\(=4x^2-20x+25-4x^2+20x\)

=25

b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)

\(=16-9x^2+9x^2+6x+1\)

=6x+17

c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)

\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)

=1

d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)

\(=\left(2021x-2020-2020x+2021\right)^2\)

\(=\left(x+1\right)^2\)

\(=x^2+2x+1\)

6 tháng 11 2021

\(a,=6x^2-4x-x^2-4x-4=5x^2-8x-4\\ b,=x^3+8-2\left(1-x^2\right)=x^3+8-2+2x^2=x^3+2x^2+6\\ c,=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\\ =\left(2x+1-2x+1\right)^2=4\)

6 tháng 11 2021

Có thể giúp mình thực hiện cách chi tiết ko ạ ? Gv dạy mik ko hiểu mấy

 

a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)

\(=6x^2-2x-6x^2-2x+18x+6\)

=14x+6

b: Ta có: \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)+3\left(2x-3\right)\)

\(=4x^2-12x+9-4x^2+1+6x-9\)

\(=-6x+1\)

c: Ta có: \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-1-x-y\right)^2\)

=1

4 tháng 9 2021

a) \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)=6x^2-2x-6x^2-2x+18x+6=14x+6\)

b) \(\left(2x-3\right)^2-\left(1+2x\right)\left(2x-1\right)+3\left(2x-3\right)=4x^2-12x+9-4x^2+1+6x-9=-6x+1\)

c) \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)

14 tháng 10 2021

a,= (x+4)\(^3\)

b,= (x-2)\(^3\)

c,= x\(^3\)+8

d,=x\(^3\)-27

14 tháng 10 2021

lời giải đâu ạ

 

23 tháng 12 2021

a: \(=x^2+2x-8-x^2-2x-1=-9\)

b: \(=\dfrac{x^2+6x+9+3x-9+2x^2-18x}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x^2-9x}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

20 tháng 11 2021

\(a,=x^2-4-x^2+2x+3=2x-1\\ b,=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2=-x-15\\ c,=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ d,=\left(2x+1+3x-1\right)^2=25x^2\)

20 tháng 11 2021

Bạn ơi, làm thế nào mà bạn tính ra được như vậy ạ? Mình thấy nó hơi khó hiểu, bạn có thể ghi rõ ra được không ạ?
Cảm ơn bạn

 

5 tháng 10 2021

Bài 2:

a) \(=x^2-36y^2\)

b) \(=x^3-8\)

Bài 3:

a) \(=x^2+2x+1-x^2+2x-1-3x^2+3=-3x^2+4x+3\)

b) \(=6\left(x-1\right)\left(x+1\right)=6x^2-6\)

a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)

\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)

\(=-16x+8\)

b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)

\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)

=27x-55

a: \(=\dfrac{\left(x+1\right)\left[\left(3x-2\right)-\left(2x+5\right)\left(x-1\right)\right]}{x+1}\)

=3x-2-2x^2+2x-5x+5

=-2x^2+3

b: \(=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\)

c: =x^3-3x^2+3x-1-x^3-1+9x^2-1

=6x^2+3x-3

24 tháng 6 2023

\(a,\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]:\left(x+1\right)\)

\(=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x-1\right)\left(x+1\right)\right]:\left(x+1\right)\)

\(=\left[\left(x+1\right)\left(3x-2-\left(2x+5\left(x-1\right)\right)\right)\right]:\left(x+1\right)\)

\(=\left[\left(x+1\right)\left(3x-2-2x^2+2x-5x+5\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(-2x^2+3\right)\right].\dfrac{1}{x+1}\)

\(=-2x^2+3\)

\(b,\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)\)

\(=\left(2x+1\right)\left[\left(2x+1\right)-2\left(3-x\right)\right]\)

\(=\left(2x+1\right)\left(2x+1-6+2x\right)\)

\(=\left(2x+1\right)\left(4x-5\right)\)

\(c,\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\)

\(=x^3-3x^2+3x-1-x^3-1-\left(3x-9x^2+1-3x\right)\)

\(=-3x^2+3x-2-3x+9x^2-1+3x\)

\(=6x^2+3x-3\)