K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)

\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)

\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)

6 tháng 5 2018

10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n

=9.(111....1(n chữ số 1)+2n)

xét --------------------------------=11...1-n+3n

dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n

=>11....1-n chia hết cho 3

=>11.....1-n+3 chia hết cho 3

=>10n+18n-1 chia hết cho 27

6 tháng 6 2016

1/

a/ \(100+20b=20\left(5+b\right)\) chia hết cho 20

b/ \(abab=10.ab+ab=11.ab\) chia hết cho ab

3/ Tích trên là tích của 3 số tự nhiên liên tiếp

+ Nếu n chẵn do n>=1 => n chia hết cho 2 => tích trên chia hết cho 2

+ Nếu n lẻ và n chia 2 dư 1 thì n-1 và n+1 chia hết cho 2 => tích trên chia hết cho 2

=> tích trên chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 thì tích trên chia hết cho 3

+ Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 => tích chia hết cho 3

+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => tích chia hết cho 3

=> Tích trên chia hết cho 3 với mọi n

Mà 2 và 3 là hai số nguyên tố cùng nhau => tích trên chia hết cho 2x3 tức là chia hết cho 6

4 tháng 4 2017

B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)

=> B=(n-2)(n-1).n(n+1)(n+2)

Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0

=> Số tận cùng của B là 0

=> B chia hết cho 10 với mọi n thuộc Z

4 tháng 4 2017

cảm ơn bạn nhiều

22 tháng 11 2019

+ Nếu n chia hết cho 3 thì tích chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3

+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3

=> tích chia hết cho 3 với mọi n

23 tháng 10 2017

n^2 + n + 1 = n( n + 1 ) + 1

n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ . 

Mà số lẻ thì không chia hết cho 2 . 

=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2 

=> n( n + 11 ) + 1 cũng không chia hết cho 4 

Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6 

=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7 

Vậy n( n + 1 ) + 1 không chia hết cho 5 

2 tháng 12 2017

n^2 + n + 1 = n( n + 1 ) + 1

n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ . 

Mà số lẻ thì không chia hết cho 2 . 

=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2 

=> n( n + 11 ) + 1 cũng không chia hết cho 4 

Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6 

=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7 

Vậy n( n + 1 ) + 1 không chia hết cho 5 

22 tháng 12 2021

\(A=n\left(n+1\right)+1\)

Vì n(n+1) chia hết cho 2

nên A ko chia hết cho 2

8 tháng 10 2022

sai roi