K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\) Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).Câu 4: Giá trị...
Đọc tiếp

Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\) 

Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).

Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).

Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?

Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.

Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là? 

Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?

Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?

Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?

Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?

3
1 tháng 8 2021

1.

\(cos2x-3cosx+2=0\)

\(\Leftrightarrow2cos^2x-3cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn

\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)

\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)

1 tháng 8 2021

2.

\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)

Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)

Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)

TH1: \(m=2\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)

\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán

TH2: \(m=3\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)

\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán

TH3: \(m=1\)

\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

Vậy \(m=2;m=3\)

2 tháng 5 2023

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn

16 tháng 5 2021

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

a: Khi m=-1 thì hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}-x+y-3=3\\x-y-2\cdot\left(-1\right)+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x+y=6\\x-y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}0x=3\left(vôlý\right)\\x-y=-3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

b: \(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)(1)

=>\(\left\{{}\begin{matrix}mx+y=6\\x+my=2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=6-mx\\x+m\left(6-mx\right)=2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+6m-m^2x=2m-1\\y=6-mx\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(1-m^2\right)=-4m-1\\y=6-mx\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m^2-1\right)=4m+1\\y=6-mx\end{matrix}\right.\)

TH1: m=1

Hệ phương trình (1) sẽ trở thành: 

\(\left\{{}\begin{matrix}x\cdot0=4\cdot1+1=5\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

=>Loại

TH2: m=-1

Hệ phương trình (1) sẽ trở thành:

\(\left\{{}\begin{matrix}x\cdot0=-4+1=-3\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

=>Loại

Th3: \(m\notin\left\{1;-1\right\}\)

Hệ phương trình (1) sẽ tương đương với \(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=6-mx=\dfrac{6\left(m^2-1\right)-m\left(4m+1\right)}{m^2-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=\dfrac{6m^2-6-4m^2-m}{m^2-1}=\dfrac{2m^2-m-6}{m^2-1}\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì m/1<>1/m

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để x nguyên thì \(4m+1⋮m^2-1\)

=>\(\left(4m+1\right)\left(4m-1\right)⋮m^2-1\)

=>\(16m^2-1⋮m^2-1\)

=>\(16m^2-16+15⋮m^2-1\)

=>\(m^2-1\inƯ\left(15\right)\)

=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

=>\(m^2\in\left\{2;0;4;6;16\right\}\)

=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)

mà m nguyên

nên \(m\in\left\{0;2;4;-2;-4\right\}\left(2\right)\)

Để y nguyên thì \(2m^2-m-6⋮m^2-1\)

=>\(2m^2-2-m-4⋮m^2-1\)

=>\(m+4⋮m^2-1\)

=>\(\left(m+4\right)\left(m-4\right)⋮m^2-1\)

=>\(m^2-16⋮m^2-1\)

=>\(m^2-1-15⋮m^2-1\)

=>\(m^2-1\inƯ\left(-15\right)\)

=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

=>\(m^2\in\left\{2;0;4;6;16\right\}\)

=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)

mà m nguyên

nên \(m\in\left\{0;2;4;-2;-4\right\}\left(3\right)\)

Từ (2),(3) suy ra \(m\in\left\{0;2;4;-2;-4\right\}\)

Thử lại, ta sẽ thấy m=4;m=-2 không thỏa mãn x nguyên; m=4;m=-2 không thỏa mãn y nguyên

=>\(m\in\left\{0;2;-4\right\}\)

NV
22 tháng 12 2020

\(\Leftrightarrow\left(cosx+1\right)\left(4cos2x-m.cosx\right)=m\left(1-cosx\right)\left(1+cosx\right)\)

\(\Leftrightarrow4cos2x-m.cosx=m\left(1-cosx\right)\)

\(\Leftrightarrow4cos2x=m\)

\(\Rightarrow cos2x=\dfrac{m}{4}\)

Pt có đúng 2 nghiệm thuộc đoạn đã cho khi và chỉ khi:

\(-1< \dfrac{m}{4}\le-\dfrac{1}{2}\Leftrightarrow-4< m\le-2\)

Có 2 giá trị nguyên của m thỏa mãn

25 tháng 9 2019