Giải phương trình nghiệm nguyên : \(x^2+2y^2+3xy-2x-y=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
(Đưa về phương trình bậc 2 ẩn yy, tham số xx)
Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0
Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x
Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.
Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)
Lập bảng xét giá trị ta được các giá trị của xx và yy:
x=−10→y=6tm;x=−10→y=6tm;
x=−6→y=6tm;x=−6→y=6tm;
x=−4→y=4,5ktm;x=−4→y=4,5ktm;
x=0→y=2tmx=0→y=2tm
Vậy...
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
\(x^2+y^2+3xy=x^2y^2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+xy=x^2y^2\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)
Do VT là số chính phương nên VP là số chính phương, để VP là số chính phương thì một trong 2 số bằng 0.
Dễ nhận ra x=y=0 là nghiệm cần tìm
2x2+3xy-2y2=7
2x2+4xy-xy-2y2=7
2x(x+2y)-y(x+2y)=7
(x+2y)(2x-y)=7
.......................................................
Dạng này thì ta phân tích vế trái là 1 tích bên phải là 1 hằng số:
2x^2+3xy-2y^2=7 <=> 2x^2 + 4xy-xy-2y^2=7
<=> 2x(x+2y)- y(x+2y)=7 <=> (x+2y)(2x-y)=7
vì 7= 7.1=1.7=-1.(-7)=-7.(-1) nên ta có 4 trường hợp:
x+2y | 1 | 7 | -7 | -1 |
2x-y | 7 | 1 | -1 | -7 |
x | 0,2 | 1,8 | -12,2 | -3 |
y | 0,4 | 2,6 | -2,6 | 1 |
kết luận | loại | loại | loại | thỏa mãn |
Vậy x=-3; y=1 mk tính vội nên k bít đúng ko ns ~~~ chúc bạn lul lul hok tốt nhoa ~~~
\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+3\left(x+y\right)=15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)
15 có hơi nhiều cặp ước nên bạn tự lập bảng và giải nốt nhé :)
\(\Leftrightarrow x^2+y^2+2xy+2x+2y+1=x^2y^2+2xy+1-1\)
\(\Leftrightarrow\left(x+y+1\right)^2=\left(xy+1\right)^2-1\)
\(\Leftrightarrow\left(xy+1\right)^2-\left(x+y+1\right)^2=1\)
\(\Leftrightarrow\left(xy+x+y+2\right)\left(xy-x-y\right)=1\)
Phương trình ước số cơ bản
1.
$3xy+x-y=1$
$\Rightarrow x(3y+1)-y=1$
$\Rightarrow 3x(3y+1)-3y=3$
$\Rightarrow 3x(3y+1)-(3y+1)=2$
$\Rightarrow (3y+1)(3x-1)=2$
Do $x,y$ là số nguyên nên $3x-1, 3y+1$ là số nguyên. Mà tích của chúng bằng 2 nên ta có các TH sau:
TH1: $3x-1=1, 3y+1=2\Rightarrow x=\frac{2}{3}$ (loại)
TH2: $3x-1=-1, 3y+1=-2\Rightarrow x=0; y=-1$
TH3: $3x-1=2, 3y+1=1\Rightarrow x=1; y=0$
TH4: $3x-1=-2, 3y+1=-1\Rightarrow x=\frac{-1}{3}$ (loại)
2.
$2x^2+3xy-2y^2=7$
$\Rightarrow (x+2y)(2x-y)=7$
Ta xét các TH sau:
TH1: $x+2y=1, 2x-y=7$
$\Rightarrow 2(x+2y)-(2x-y)=2-7=-5$
$\Leftrightarrow 5y=-5\Leftrightarrow y=-1$.
$x=1-2y=1-2(-1)=1+2=3$
TH2: $x+2y=-1, 2x-y=-7$
$\Rightarrow x=-3; y=1$
TH3: $x+2y=7, 2x-y=1$
$\Rightarrow x=\frac{9}{5}$ (loại)
TH4: $x+2y=-7, 2x-y=-1$
$\Rightarrow x=\frac{-9}{5}$ (loại)
Vậy.............
Ta có: \(x^2+2y^2+3xy-2x-y=6\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+y^2+xy-2x-y=6\)
\(\Leftrightarrow\left(x+y\right)^2-1+\left(y^2+xy+y\right)-\left(2x+2y+2\right)=3\)
\(\Leftrightarrow\left(x+y+1\right)\left(x+y-1\right)+y\left(x+y+1\right)-2\left(x+y+1\right)=3\)
\(\Leftrightarrow\left(x+y+1\right)\left(x+2y-3\right)=3\)
Đến đây giải PT ước số ra thì dễ rồi
\(x^2+2y^2+3xy-2x-y=6\)
\(\Rightarrow x^2+x\left(3y-2\right)+2y^2-y-3=3\)
Xét : \(\Delta\left(VT\right)=\left(3y-2\right)^2-4\left(2y^2-y-3\right)=\left(y-4\right)^2\)
\(\Rightarrow\)PT có nghiệm là \(x=-y-1\)và \(x=3-2y\)
\(\Rightarrow\left(x+y+1\right)\left(x-3+2y\right)=3=1.3=3.1=\left(-1\right).\left(-3\right)=\left(-3\right).\left(-1\right)\)
Giải hệ
\(\Rightarrow\left(x,y\right)=\left( -6,6\right);\left(0,2\right);\left(-4,2\right);\left(-10,6\right)\)