K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Ta có : \(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5=\frac{1}{2}\sqrt{3x}\)

\(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5-\frac{1}{2}\sqrt{3x}=0\)

\(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)

\(\Rightarrow\sqrt{3x}\left(\frac{3}{2}-1-\frac{1}{2}\right)=5\)

\(\Rightarrow\sqrt{3x}.0=5\)

Vậy bất phương trình 

6 tháng 9 2017

\(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)

\(0\sqrt{3x}=5\)(vô lý)

vậy pt vô nghiệm

4 tháng 10 2016

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

4 tháng 10 2016

Một bài làm rất hay !

1 tháng 3 2018

\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)

\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)

18 tháng 8 2020

\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)

\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)

Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)

Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)

Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)

Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)

Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

7 tháng 8 2017

và tìm điều kiện 

7 tháng 8 2017

 đk \(x\ge0\)

\(\frac{\sqrt{3x}-3}{3+\sqrt{3x}}=-\frac{1}{5}\)

\(\Leftrightarrow\frac{\left(\sqrt{3x}-3\right)^2}{\left(\sqrt{3x}-3\right)\left(3+\sqrt{3x}\right)}=-\frac{1}{5}\)

\(\Leftrightarrow\frac{3x-6\sqrt{3x}+9}{3x-9}=-\frac{1}{5}\)

\(\Leftrightarrow\frac{\left(x-2\sqrt{3x}+3\right)}{x-3}=-\frac{1}{5}\)

\(\Leftrightarrow5\left(x-2\sqrt{3x}+3\right)=3-x\)

\(\Leftrightarrow5x-10\sqrt{3x}+15=3-x\)

\(\Leftrightarrow6x-2.5\sqrt{3x}+12=0\)

20 tháng 9 2017

Đặt \(\hept{\begin{cases}a=\sqrt{4x+1}\\b=\sqrt{3x-2}\end{cases}\ge}0\) thì có:

\(\Rightarrow a^2-b^2=x+3\)\(\Rightarrow a-b=\frac{a^2-b^2}{5}\)

\(\Rightarrow a-b-\frac{\left(a-b\right)\left(a+b\right)}{5}=0\)

\(\Rightarrow\left(a-b\right)\left(1-\frac{a+b}{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=b\\a+b=5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{4x+1}=\sqrt{3x-2}\\\sqrt{4x+1}+\sqrt{3x-2}=5\end{cases}}\)\(\Rightarrow x=2\)

@Thắng Nguyễn