Cho a/b=c/d
CMR: a^2+b^2/a×3+b^3=c^2+d^2/c×3+d^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
2: \(\dfrac{2a+b}{a-2b}=\dfrac{2\cdot bk+b}{bk-2b}=\dfrac{b\left(2k+1\right)}{b\left(k-2\right)}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{d\left(2k+1\right)}{d\left(k-2\right)}=\dfrac{2k+1}{k-2}\)
Do đó: \(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
3: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\cdot\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
4: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5\cdot bk+3b}{5dk+3d}=\dfrac{b\left(5k+3\right)}{d\left(5k+3\right)}=\dfrac{b}{d}\)
\(\dfrac{5a-3b}{5c-3d}=\dfrac{5\cdot bk-3b}{5\cdot dk-3d}=\dfrac{b\left(5k-3\right)}{d\left(5k-3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
a) Đề phải là \(\frac{c}{a-c}=\frac{d}{b-d}\) chứ.
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{d}{b}=\frac{c}{a}\)
\(\Rightarrow\frac{b}{d}=\frac{a}{c}\)
\(\Rightarrow\frac{b}{d}-1=\frac{a}{c}-1\)
\(\Rightarrow\frac{b}{d}-\frac{d}{d}=\frac{a}{c}-\frac{c}{c}.\)
\(\Rightarrow\frac{b-d}{d}=\frac{a-c}{c}\)
\(\Rightarrow\frac{d}{b-d}=\frac{c}{a-c}\left(đpcm1\right).\)
c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}\) (1)
\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\)
Do đó: \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
c: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2\cdot bk+3b}{2\cdot bk-3b}=\dfrac{2k+3}{2k-3}\)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{2k+3}{2k-3}\)
Do đó: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
\(\frac{a^2+b^2}{a.3+b^3}=\frac{c^2+d^2}{c.3+d^3}\)
Vì \(\frac{a}{b}=\frac{c}{d}\) . Nên :
=> \(a^2=c^2\) (1)
=> b2 = d2 (2)
=> a.3 = c.3 (3)
=> b3 = d3 (4)
Từ (1),(2),(3) và (4) => đpcm
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=>\(\frac{a}{c}=\frac{b}{d}\)\(=\)\(\frac{a^2+b^2}{c^2+d^2}\)
Từ (1),(2)
=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.3+b^3}{c.3+d^3}\)
=>\(\frac{a^2+b^2}{a.3+b^3}=\frac{c^2+d^2}{c.3+d^3}\)