tìm giá trị nhỏ nhất
A=1,7+|x-3,5|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=1,7+\left|3,4-x\right|\ge1,7\)
\(minA=1,7\Leftrightarrow x=3,4\)
2) \(B=\left|x-2,8\right|-3,5\ge-3,5\)
\(minB=-3,5\Leftrightarrow x=2,8\)
3) \(C=0,5-\left|x-3,5\right|\le0,5\)
\(maxC=0,5\Leftrightarrow x=3,5\)
a) Vì | 3,4 - x | >= 0
=> 1,7 + | 3,4 - x | >= 1,7
Vậy Min A = 1,7 (=) 3,4-x = 0
=> x= 3,4
b) Vì | x-3,5| >= 0
=> 0,5 - | x-3,5| <= 0,5
Vậy Max D = 0,5 <=> x - 3,5 = 0
<=> x= 3,5
a ) Ta có : \(\left|3,4-x\right|\ge0\)
\(\Rightarrow1,7+\left|3,4-x\right|\ge1,7\)
Dấu " = " xảy ra khi và chỉ khi \(3,4-x=0\)
\(x=3,4\)
Vậy \(Min_A=1,7\) khi và chỉ khi \(x=3,4\)
b ) Ta có : \(\left|x-3,5\right|\ge0\)
\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\)
Dấu " = " xảy ra khi và chỉ khi \(x-3,5=0\)
\(x=3,5\)
Vậy \(MAX_B=0,5\) khi và chỉ khi \(x=3,5\)
a/ Ta có: -|x - 3,5|\(\le\)0
=> A = 0,5 - |x - 3,5|\(\le\)0,5
Đẳng thức xảy ra khi: |x - 3,5| = 0 => x = 3,5
Vậy giá trị lớn nhất của A là 0,5 khi x = 3,5
b/ Ta có: -|1,4 - x|\(\le\)0
=> B = - |1,4 - x| - 2\(\le\)-2
Đẳng thức xảy ra khi: -|1,4 - x| = 0 => x = 1,4
Vậy giá trị lớn nhất của B là -2 khi x = 1,4
c/ Ta có: |3,4 - x|\(\ge\)0
=> C = 1,7 + |3,4 - x| \(\ge\)1,7
Đẳng thức xảy ra khi: |3,4 - x| = 0 => x = 3,4
Vậy giá trị nhỏ nhất của C là 1,7 khi x = 3,4
d/ Ta có: |x + 2,8|\(\ge\)0
=> D = |x + 2,8| - 3,5 \(\ge\)-3,5
Đẳng thức xảy ra khi: |x + 2,8| = 0 => x = -2,8
Vậy giá trị nhỏ nhất của D là -3,5 khi x = -2,8
C = 1,7 + |3,4 –x|
Vì |3,4 – x| ≥ 0 ⇒ 1,7 + | 3,4 – x| ≥ 1,7
Suy ra C = 1,7 + |3,4 – x| ≥ 1,7
C có giá trị nhỏ nhất là 1,7 khi | 3,4 – x | = 0 ⇒ x = 3,4
Vậy C có giá trị nhỏ nhất bằng 1,7 khi x = 3,4
D = |x + 2,8| -3,5
Vì |x + 2,8| ≥ 0 ⇒ |x + 2,8| - 3,5 ≥ -3,5
Suy ra” D = |x + 2,8 | - 3,5 ≥ -3,5
D có giá trị nhỏ nhất là -3,5 khi | x + 2,8| = 0 ⇒ x = -2,8
Vậy D có giá trị nhỏ nhất bằng -3,5 khi x = -2,8
Bài 10:
a) Tìm Max
\(A=0,5-\left|x-3,5\right|\)
Có: \(\left|x-3,5\right|\ge0\)
\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\)
Dấu = xảy ra khi: \(\left|x-3,5\right|=0\)
\(\Rightarrow x-3,5=0\Rightarrow x=3,5\)
Vậy: \(Max_A=0,5\) tại \(x=3,5\)
\(B=-\left|1,4-x\right|-2\)
Có: \(-\left|1,4-x\right|\le0\)
\(\Rightarrow-\left|1,4-x\right|-2\le-2\)
Dấu = xảy ra khi: \(-\left|1,4-x\right|=0\)
\(\Rightarrow1,4-x=0\Rightarrow x=1,4\)
Vậy: \(Max_B=-2\) tại \(x=1,4\)
b. Tìm Min
\(C=1,7+\left|3,4-x\right|\)
Có: \(\left|3,4-x\right|\ge0\)
\(\Rightarrow1,7+\left|3,4-x\right|\ge1,7\)
Dấu = xảy ra khi: \(\left|3,4-x\right|=0\)
\(\Rightarrow3,4-x=0\Rightarrow x=3,4\)
Vậy: \(Min_C=1,7\) tại \(x=3,4\)
\(D=\left|x+2,8\right|-3,5\)
Có: \(\left|x+2,8\right|\ge0\)
\(\Rightarrow\left|x+2,8\right|-3,5\ge-3,5\)
Dấu = xảy ra khi: \(\left|x+2,8\right|=0\)
\(\Rightarrow x+2,8=0\Rightarrow x=-2,8\)
Vậy: \(Min_D=-3,5\) tại \(x=-2,8\)
a) C = 1,7 + I3,4-xI
I3,4-xI \(\ge\)0
\(\Rightarrow\)C = 1,7 + I3,4-xI \(\ge\)1,7.
Vậy giá trị nhỏ nhất của C là 1,7 tại 3,4-x hay x = 3,4.
b) sao lại Ix = 2,8 I ?
Để A có GTNN thì lx-3,5l phải bằng 0.
A=1,7+lx-3,5l=1,7+l3,5-3,5l=1,7+0=1,7
Vậy GTNN của A là 1,7