K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2024

 \(\Rightarrow\) vì \(|\)\(x|\) o mà về phải luôn > = 3 về trái cũng phải luôn \(\ge\) 3\(x\ge\) o

\(\Rightarrow\) 2024 \(\times1011x-< =1012x+3\)

\(x=5\)

vậy \(x=\) 5 sẽ thỏa mãn yêu cầu bài toán

27 tháng 7 2023

\(M=-2024x^{2023}-2y-\dfrac{1}{2}x^3y^2-10+2021^{2023}+y-1\)

\(M=\left(-2024x^{2023}+2024x^{2023}\right)-\left(2y-y\right)-\left(10+1\right)-\dfrac{1}{2}x^3y^2\)

\(M=-y-11-\dfrac{1}{2}x^3y^2\)

Thay x=-2, y=-1 vào M ta có:

\(M=-\left(-1\right)-11-\dfrac{1}{2}\cdot\left(-2\right)^3\cdot\left(-1\right)^2=-6\)

18 tháng 9 2017

\(\left|x+1\right|+\left|x+2\right|+.........+\left|x+101\right|=2024x\)

\(\Leftrightarrow\left|101x+\dfrac{\left[\left(101-1\right):1+1\right]\left(101+1\right)}{2}\right|=2024x\)

\(\Leftrightarrow\left|101x+5151\right|=2024x\)

\(\Leftrightarrow\left|101x+5151\right|-2024x=0\)

\(\Leftrightarrow-1923x+5151=0\)

\(\Leftrightarrow-1923x=5151\)

\(\Leftrightarrow x=\dfrac{5151}{-1923}\)

Vậy ..

18 tháng 9 2017

đề mình ko ghi lại nhé

\(\Rightarrow\left|101x+\dfrac{\left[\left(101-1\right):1+1\right]\left(101+1\right)}{2}\right|=2024x\)

\(\Rightarrow\left|101x+5151\right|=2024x\)

\(\Rightarrow-1923+5151=0\)

\(\Rightarrow-1923x=5151\Rightarrow x=\dfrac{5151}{-1923}\)

4 tháng 4 2023

\(1.x-\dfrac{2}{3}\times\left(x+9\right)=1\)

\(x-\dfrac{2}{3}\times x-6=1\)

\(x\times\left(1-\dfrac{2}{3}\right)=7\)

\(x\times\dfrac{1}{3}=7\)

\(x=21\)

\(2.x-\dfrac{11}{15}=\dfrac{3+x}{5}\)

\(\dfrac{15x}{15}-\dfrac{11}{15}=\dfrac{9+3x}{15}\)

\(15x-11=9+3x\)

\(12x=20\)

\(x=\dfrac{5}{3}\)

13 tháng 8 2023

a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))

\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)

\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)

\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)

\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)

\(A=\dfrac{-5}{x-3}\)

b) Ta có: \(\left|x\right|=1\)

TH1: \(\left|x\right|=-x\) với \(x< 0\)

Pt trở thành:

\(-x=1\) (ĐK: \(x< 0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

Thay \(x=-1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)

TH2: \(\left|x\right|=x\) với \(x\ge0\)

Pt trở thành:

\(x=1\left(tm\right)\) (ĐK: \(x\ge0\)

Thay \(x=1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)

c) \(A=\dfrac{1}{2}\) khi:

\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)

\(\Leftrightarrow-10=x-3\)

\(\Leftrightarrow x=-10+3\)

\(\Leftrightarrow x=-7\left(tm\right)\)

d) \(A\) nguyên khi:

\(\dfrac{-5}{x-3}\) nguyên

\(\Rightarrow x-3\inƯ\left(-5\right)\)

\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)

a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)

\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)

\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)

\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)

b: |x|=1

=>x=-1(loại) hoặc x=1(nhận)

Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)

c: A=1/2

=>x-3=-10

=>x=-7

d: A nguyên

=>-5 chia hết cho x-3

=>x-3 thuộc {1;-1;5;-5}

=>x thuộc {4;2;8;-2}

14 tháng 4 2019

b

\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)

Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)

14 tháng 4 2019

a

Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)

\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)

Với \(x\ge4\) ta có:

\(3x-12+4x=2x-2\)

\(\Rightarrow5x=10\)

\(\Rightarrow x=2\left(KTMĐK\right)\)

Với  \(x< 4\) ta có:

\(12-3x+4x=2x-2\)

\(\Rightarrow10=x\left(KTMĐK\right)\)