\(\dfrac{13\cdot\left(-135\right)+13\cdot115}{75-95}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\dfrac{4}{13}\cdot\dfrac{6}{5}+\dfrac{4}{13}\cdot\dfrac{2}{5}\right)\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{4}{13}\cdot\left(\dfrac{6}{5}+\dfrac{2}{5}\right)\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{4}{13}\cdot\dfrac{8}{5}\cdot\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{32}{65}\cdot\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\left(2x+1\right)^2=\dfrac{10}{13}:\dfrac{32}{65}=\dfrac{10}{13}\cdot\dfrac{65}{32}=\dfrac{25}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{5}{4}\\2x+1=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{5}{4}-1=\dfrac{1}{4}\\2x=-\dfrac{5}{4}-1=-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}:2=\dfrac{1}{8}\\x=-\dfrac{9}{4}:2=-\dfrac{9}{8}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{1}{8};-\dfrac{9}{8}\right\}\)
a: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{13}{15-2}\cdot\dfrac{-15}{40}=\dfrac{-3}{8}\)
b: \(=\dfrac{18\left(34-124\right)}{36\left(-17-13\right)}=\dfrac{1}{2}\cdot\dfrac{-90}{-30}=\dfrac{3}{2}\)
c: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{\dfrac{-1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)
\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}\)
\(=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)
\(\dfrac{-5}{9}+1\dfrac{5}{9}.\left(\dfrac{3}{4}-\dfrac{2}{5}\right):7^2\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\left(\dfrac{3}{4}-\dfrac{2}{5}\right):49\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\left(\dfrac{15}{20}-\dfrac{8}{20}\right):49\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\dfrac{7}{20}:49\\ =\dfrac{-5}{9}+\dfrac{49}{90}:49\\ =\dfrac{-5}{9}+\dfrac{1}{90}\\ =\dfrac{-50}{90}+\dfrac{1}{90}\\ =\dfrac{-49}{90}\)
\(1\dfrac{13}{15}.0,75-\left(\dfrac{104}{195}+25\%\right).\dfrac{24}{47}-3\dfrac{12}{13}:3\\ =\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{8}{15}+\dfrac{1}{4}\right).\dfrac{24}{47}-\dfrac{51}{13}:3\\ =\dfrac{7}{5}-\left(\dfrac{32}{60}+\dfrac{15}{60}\right).\dfrac{24}{47}-\dfrac{51}{13}.\dfrac{1}{3}\\ =\dfrac{7}{5}-\dfrac{47}{60}.\dfrac{24}{47}-\dfrac{17}{13}\\ =\dfrac{7}{5}-\dfrac{2}{5}-\dfrac{17}{13}\\ =1-\dfrac{17}{13}\\ =\dfrac{13}{13}-\dfrac{17}{13}\\ =\dfrac{-4}{13}\)
1,
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
\(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)
\(=\dfrac{1}{3}+\left(\dfrac{12}{67}-\dfrac{79}{67}\right)+\left(\dfrac{13}{41}+\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\left(-1\right)+1=\dfrac{1}{3}+0=\dfrac{1}{3}\)
\(\left(\dfrac{15}{4}-5x\right).\left(9x^2-4\right)=0\)
\(\left[{}\begin{matrix}\dfrac{15}{4}-5x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=\dfrac{15}{4}\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(F=\left(-\dfrac{1}{2015}\right)^0-\left(\dfrac{13}{27}.\dfrac{162}{39}-1\right)^{2015}+\left(-\dfrac{1}{3}\right)^2\\ F=1-\left(2-1\right)^{2015}+\dfrac{1}{9}\\ F=1-1+\dfrac{1}{9}\\ F=\dfrac{1}{9}\)
Chúc bạn học tốt!!!
\(a,=\dfrac{3^6\cdot5^4\cdot9^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+9^6\cdot5^6}=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}\\ =\dfrac{3^{13}\cdot5^4\cdot2}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
\(b,=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}\cdot\dfrac{16}{3}\right)^3}{2^7\cdot5^2+2^9}=\dfrac{2^7+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{2^7+4^3\cdot3^3}{2^7\cdot29}=\dfrac{2^6\left(2+3^3\right)}{2^7\cdot29}=\dfrac{1}{2}\)
Giải:
1) (-8/13:3/7+-5/13:3/7).(-4)3.|-3|/7
=[7/3.(-8/13+-5/13)].-192/7
=[7/3.(-1)].-192/7
=-7/3.-192/7
=64
2) 75%-(5/2+5/3)+(-1/2)2
=3/4-25/6+1/4
=(3/4+1/4)-25/6
=1-25/6
=-19/6
Chúc bạn học tốt!
1) \(\left(\dfrac{-8}{13}:\dfrac{3}{7}+\dfrac{-5}{13}:\dfrac{3}{7}\right).\dfrac{\left(-4\right).|-3|}{7}\)
= \(\left[\left(\dfrac{-8}{13}+\dfrac{-5}{13}\right):\dfrac{3}{7}\right].\dfrac{-64.3}{7}\)
= \(\left[-1:\dfrac{3}{7}\right].\dfrac{-192}{7}\)
= \(\dfrac{-7}{3}.\dfrac{-192}{7}\)
= \(64\)
2) \(75\%-\left(\dfrac{5}{2}+\dfrac{5}{3}\right)+\left(-\dfrac{1}{2}\right)^2\)
= \(\dfrac{3}{4}-\dfrac{25}{6}+\dfrac{1}{4}\)
= \(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)-\dfrac{25}{6}\)
= \(1-\dfrac{25}{6}\)
= \(\dfrac{-19}{6}\)
Chúc bạn học tốt !
\(\dfrac{13\cdot\left(-135\right)+13\cdot115}{75-95}=\dfrac{113\left(-135+115\right)}{-20}\)
\(=\dfrac{113\cdot\left(-20\right)}{-20}=113\)