a] 5x phần 2x+3 _ x+4 phần 2x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\\ \Rightarrow7.\left(2x-1\right)-3.\left(5x+2\right)=21.\left(x+13\right)\\ \Rightarrow14x-7-15x-6=21x+273\\\Rightarrow -x-21x=273+13\\ \Rightarrow-22x=286\\ \Rightarrow x=-13\\ b,\dfrac{3\left(x+3\right)}{4}+\dfrac{1}{2}=\dfrac{5x+9}{3}-\dfrac{7x-9}{4}=0\\ \Rightarrow9.\left(x+3\right)+6=4.\left(5x+9\right)-3.\left(7x-9\right)=0\\\Rightarrow 9x+27+6=20x+36-21x+27\\ \Rightarrow9x+33=-x+63\\ \Rightarrow10x=30\\ \Rightarrow x=3\)
\(a,\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
\(\Rightarrow7\left(2x-1\right)-3\left(5x+2\right)-21x-273=0\)
\(\Rightarrow14x-7-15x-6-21x-273=0\)
\(\Rightarrow-22x=286\)
\(\Rightarrow x=-13\)
\(b,\dfrac{3\left(x+3\right)}{4}+\dfrac{1}{2}=\dfrac{5x+9}{3}-\dfrac{7x-9}{4}\)
\(\Rightarrow9\left(x+3\right)+6-4\left(5x+9\right)+3\left(7x-9\right)=0\)
\(\Rightarrow9x+27+6-20x-36+21x-27=0\)
\(\Rightarrow10x=30\Rightarrow x=3\)
a) Ta có: \(\dfrac{-3}{5}x+\dfrac{-7}{4}=\dfrac{3}{10}\)
\(\Leftrightarrow\dfrac{-3}{5}x=\dfrac{3}{10}+\dfrac{7}{4}=\dfrac{41}{20}\)
\(\Leftrightarrow x=\dfrac{41}{20}:\dfrac{-3}{5}=\dfrac{41}{20}\cdot\dfrac{-5}{3}\)
hay \(x=-\dfrac{41}{12}\)
Vậy: \(x=-\dfrac{41}{12}\)
a/ \(2x+\frac{1}{7}=\frac{1}{3}\)
=> \(2x=\frac{1}{3}-\frac{1}{7}=\frac{7}{21}-\frac{3}{21}\)
=> \(2x=\frac{4}{21}\)
=> \(x=\frac{4}{21}:2=\frac{4}{21}.\frac{1}{2}=\frac{2}{21}\)
b/ \(3\left(x-\frac{1}{2}\right)=\frac{4}{9}\)
=> \(x-\frac{1}{2}=\frac{4}{9}:3=\frac{4}{9}.\frac{1}{3}\)
=> \(x-\frac{1}{2}=\frac{4}{27}\)
=> \(x=\frac{4}{27}+\frac{1}{2}=\frac{8}{54}+\frac{27}{54}=\frac{35}{54}\)
c/ \(\left(x-5\right)^2+4=68\)
=> \(\left(x-5\right)^2=68-4=64\)
=> \(\left[{}\begin{matrix}x-5=8\\x-5=-8\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=8+5=13\\x=-8+5=-3\end{matrix}\right.\)
d/ \(\left(\left|x\right|-\frac{1}{2}\right)\left(2x+\frac{3}{2}\right)=0\)
=> \(\left[{}\begin{matrix}\left|x\right|-\frac{1}{2}=0\\2x+\frac{3}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left|x\right|=0+\frac{1}{2}=\frac{1}{2}\\2x=0-\frac{3}{2}=-\frac{3}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\\x=-\frac{3}{2}:2=-\frac{3}{2}.\frac{1}{2}=-\frac{3}{4}\end{matrix}\right.\)
e) \(5x+2=3x+8\)
=> \(5x-3x=8-2=6\)
=> \(2x=6\)
=> \(x=6:2=3\)
f/ \(26-\left(5-2x\right)=27\)
=> \(5-2x=26-27=-1\)
=> \(2x=5-\left(-1\right)=5+1=6\)
=> \(x=6:2=3\)
g/ \(\left(4x-8\right)-\left(2x-6\right)=4\)
=> \(4x-8-2x+6=4\)
=> \(\left(4x-2x\right)+\left(-8+6\right)=4\)
=> \(2x+-2=4\)
=> \(2x=4+2=6\)
=> \(x=6:2=3\)
h/ \(\left(x+3\right)^3:3-1=-10\)
=> \(\left(x+3\right)^3:3=-10+1=-9\)
=> \(\left(x+3\right)^3=-9.3=-27\)
=> \(x+3=-3\)
=> \(x=-3-3=-6\)
(x-1)(2x^2-8)=0
\(\Leftrightarrow\left(x-1\right)\left(2x^2-8\right)=0\\ \left(2x^3-8x-2x^2+8\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=\dfrac{8}{2}\)
3x^2-8x+5=0
áp dụng công thức bậc 2 ta có:
\(x=\dfrac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4.3.5}}{2.3}\)
\(\Rightarrow x=\dfrac{5}{3};x=1\)
(7x-1).2x-7x+1=0
\(\Leftrightarrow\left(7x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{7};x=\dfrac{1}{2}\)
a: 3-2|4x-5|=2/6
=>2|4x-5|=3-1/3=8/3
=>|4x-5|=4/3
=>4x-5=4/3 hoặc 4x-5=-4/3
=>4x=19/3 hoặc 4x=11/3
=>x=19/12 hoặc x=11/12
c: (7-3x)(2x+1)=0
=>2x+1=0 hoặc -3x+7=0
=>x=-1/2 hoặc x=-7/3
d: 2x(5-3x)>0
=>x(3x-5)<0
=>0<x<5/3
a) \(\left(8\frac{4}{5}x-50\right):0,4=5\)
\(\Rightarrow\left(\frac{44}{5}x-50\right)=5.0,4\)
\(\Rightarrow\frac{44}{5}x-50=2\)
\(\Rightarrow\frac{44}{5}x=2+50\)
\(\Rightarrow\frac{44}{5}x=52\)
\(\Rightarrow x=\frac{65}{11}\)
b) \(\left(\frac{5x}{3}-3\right):15=\frac{3}{10}\)
\(\Rightarrow\frac{5x}{3}-3=\frac{3}{10}.15\)
\(\Rightarrow\frac{5x}{3}-3=\frac{45}{10}\)
\(\Rightarrow\frac{5x}{3}=\frac{45}{10}+3\)
\(\Rightarrow\frac{5x}{3}=\frac{15}{2}\)
\(\Rightarrow5x.2=3.15\)
=> 5x.2 = 45
=> 5x = 45 : 2
=> 5x = 45/2
=> x = 9/2
\(\dfrac{3}{x^2-5x}=\dfrac{3}{x\left(x-5\right)}=\dfrac{6}{2x\left(x-5\right)}\\ \dfrac{-5}{10-2x}=\dfrac{5}{2\left(x-5\right)}=\dfrac{5x}{2x\left(x-5\right)}\)
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
\(\dfrac{5x}{2x+3}-\dfrac{x+4}{2x+3}=\dfrac{5x-x-4}{2x+3}=\dfrac{4x-4}{2x+3}\)