K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

XétΔABC vuông tại A có \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}\simeq53^0\)

b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)

\(HB=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)

HC=BC-HB=3,2(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔHCA vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

d: Xét tứgiác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

Xét (AH/2) có

\(\widehat{ANM}\) là góc nội tiếp chắn cung AM

\(\widehat{AHM}\) là góc nội tiếp chắn cung AM

DO đó: \(\widehat{ANM}=\widehat{AHM}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AE là đường trung tuyến

nên AE=CE
=>\(\widehat{EAC}=\widehat{C}\)

\(\widehat{ANM}+\widehat{EAC}=\widehat{B}+\widehat{C}=90^0\)

=>AE\(\perp\)MN

2 tháng 9 2017

tự vẽ hình nha bn

a. Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)(Theo định lí Pytago, tam giác ABC vuông tại A)

b. Ta có: \(\frac{BH}{CH}=\frac{3}{4}\)

\(\Leftrightarrow\frac{BH+CH}{CH}=\frac{3}{4}+1\)

\(\Leftrightarrow\frac{BC}{CH}=\frac{7}{4}\)\(\Leftrightarrow\frac{5}{CH}=\frac{7}{4}\)\(\Leftrightarrow CH=\frac{5.4}{7}=\frac{20}{7}\)

\(\Rightarrow BH=5-\frac{20}{7}=\frac{15}{7}\)

3 tháng 9 2017

c,d bạn giải giùm mình được không

8 tháng 3 2022

a.Xét tam giác ANH và tam giác AHC, có:

\(\widehat{ANH}=\widehat{AHC}=90^0\)

\(\widehat{NAH}=\widehat{HCA}\) ( cùng phụ với \(\widehat{A}\) )

Vậy tam giác ANH đồng dạng tam giác AHC ( g.g )

b. Xét tam giác AHB và tam giác ABC, có:

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác AHB đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{BH}{AB}\)

\(\Leftrightarrow\dfrac{12}{13}=\dfrac{BH}{15}\)

\(\Leftrightarrow13BH=180\)

\(\Leftrightarrow BH=\dfrac{180}{13}cm\)

Xét tam giác AHC và tam giác ABC, có:

\(\widehat{CAB}=\widehat{CHA}=90^0\)

\(\widehat{C}:chung\)

Vậy tam giác AHC đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{CH}{AC}\)

\(\Leftrightarrow\dfrac{12}{15}=\dfrac{CH}{13}\) \(\Leftrightarrow\dfrac{4}{5}=\dfrac{CH}{13}\)

\(\Leftrightarrow5CH=52\)

\(\Leftrightarrow CH=\dfrac{52}{5}cm\)

28 tháng 6 2023

bạn ghi cách ra sẽ dễ thấy hơi á

Sửa đề: ΔABC vuông tại A

a: MB/NH=BH^2/AB:CH^2/AC

=BH^2/CH^2*AC/AB

=(AB/AC)^4*AC/AB=AB^3/AC^3

b: BC*BM*CN

=BC*BH^2/AB*CH^2/AC

=AH^4/AH=AH^3

c: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nen AN*AC=AH^2

ΔABC vuông tại A có AH vuông góc BC

nên HB*HC=AH^2

=>HB*HC=AM*AB

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>AH=MN

=>AM*AB=HB*HC=MN^2

d: BM*BA+AN*AC

=BH^2+AH^2=AB^2=BH*BC

28 tháng 12 2020

a) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB, N∈AC)

\(\widehat{AMH}=90^0\)(HM⊥AB)

\(\widehat{ANH}=90^0\)(HN⊥AC)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)(1)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=AH\cdot\dfrac{10}{2}=5\cdot AH\)(2)

Từ (1) và (2) suy ra \(5\cdot AH=24\)

hay AH=4,8cm

Ta có: AMHN là hình chữ nhật(cmt)

nên AH=MN(Hai đường chéo trong hình chữ nhật AMHN)

mà AH=4,8cm(cmt)

nên MN=4,8cm

Vậy: MN=4,8cm

15 tháng 8 2023

Xét tứ giác AEHD, có:
∠A = ∠E = ∠D = 90°
=> tứ giác AEHD là hình chữ nhật.

O là giao điểm hai đường chéo hcn AEHD
=> OD = OH (1).

DI là đường trung tuyến ứng với cạnh huyền của Δ vuông DHB
=> DI = 1/2 BH = IH (2).

Xét Δ IDO và Δ IHO, có:
OD = OH (1).
OI là cạnh chung.
DI = IH (2).
=> Δ IDO = Δ IHO (đpcm).

(bồ xem thử ổn hông nhe).