K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Ta có : x2 - 2x - 3 

= x2 - 3x + x - 3

= x(x - 3)  + (x - 3)

= (x + 1)(x - 3)

x2 + 4x + 3

= x2 + 3x + x + 3

= x(x + 3) + (x + 3)

= (x + 1)(x + 3)

2x2 + 3x - 5 

= 2x2 - 2x + 5x - 5

= 2x(x - 1) + 5(x - 1)

= (2x + 5)(x - 1)

2 tháng 9 2017

Dùng phương pháp tách:

a) \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)

b) \(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)

c) \(2x^2+3x-5=2x^2-2x+5x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

Câu d, e, f tương tự.

4 tháng 10 2021

b) \(16x-5x^2-3=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)

c) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

d) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

27 tháng 10 2021

\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)

a: \(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

9 tháng 12 2021

a)x2-2x-4y2-4y

=x2-2x-4y2-4y+1-1

=(x2-2x+1)-(4y2+4y+1)

=(x-1)2-(2y+1)2

=(x-2y-2)(x+2y)

b)2x2+3x-5

=2x2-2x+5x-5

=2x(x-1)+5(x-1)

=(x-1)(2x+5)

 

 

4 tháng 8 2023

\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)

\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)

\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)

\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)

 

 

 

b: =xy-x-y+1

=x(y-1)-(y-1)

=(x-1)(y-1)

c: =(x-2y)^2-4y

\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)

d: =16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4-x+y)(4+x-y)

a: \(=x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-1\right)\)

b: \(=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

11 tháng 8 2021

a/ \(\left(x+y\right)^2-8\left(x+y\right)+12\)

\(=\left(x+y\right)\left(x+y-8+12\right)\)

\(=\left(x+y\right)\left(x+y+4\right)\)

==========

b/\(\left(x^2+2x\right)^2-2x^2-4x-3\)

\(=\left(x^2+2x\right)^2-\left(2x^2+4x\right)-3\)

\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3\)

\(=\left(x^2+2x\right)\left(x^2+2x-5\right)\)

===========

c/ \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-2-15\right)\)

\(=\left(x^2+x\right)\left(x^2+x-17\right)\)

[---]

\(A=x^2+3x+2=\left(x+1\right)\left(x+2\right)\)

\(B=x^2-4x-5=\left(x-5\right)\left(x+1\right)\)

\(C=3x^2+7x+4=\left(x+1\right)\left(3x+4\right)\)

29 tháng 8 2021

\(A=x^2+3x+2=\left(x+1\right)\left(x+2\right)\)

\(B=x^2-4x-5=\left(x-5\right)\left(x+1\right)\)

\(C=3x^2+7x+4=\left(x+1\right)\left(3x+4\right)\)

28 tháng 12 2021

mn giúp e ik mn

 

28 tháng 12 2021

\(a\text{)}x^2y+xy^2=xy\left(x+y\right)\)

\(b\text{)}x^2-2x+1=\left(x-1\right)^2\)

\(c\text{)}x^2-5x+4=\left(x-1\right)\left(x-4\right)\)

14 tháng 10 2021

a) = 2(x-2)^2

b) = 4(x - y) + (x - y)(x + y)

= (x - y)(x + y + 4)

c) = (x - 2)(x - 4)

14 tháng 10 2021

\(2\left(x-2\right)^2\)

\(\left(4+x+y\right)\left(x-y\right)\)