K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2024

....

13 tháng 3 2017

Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015

=> 3S = 3 + 32 + 33 + ...... + 32016

=> 3S - S = 32016 - 1

=> 2S = 32016 - 1

=> 2S + 1 = 32016

Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)

7 tháng 4 2023

     

11 tháng 3 2017

1)

gọi ƯC(3n-2,4n-3) là d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)

=>ƯC(3n-2,4n-3)={1;-1}

=>\(\frac{3n-2}{4n-3}\)là p/số tối giản

vậy...

18 tháng 3 2022

`Answer:`

1. \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)

\(\Rightarrow S=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{80}\right)\)

\(\Rightarrow S>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)

\(\Rightarrow S>20.\frac{1}{60}+20.\frac{1}{80}\)

\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow S>\frac{7}{12}\)

2. \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\)

Ta có:

 \(2^2< 1.2\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)

\(3^2< 2.3\Rightarrow\frac{1}{3^2}< \frac{1}{2.3}\)

\(4^2< 3.4\Rightarrow\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(2009^2< 2008.2009\Rightarrow\frac{1}{2009^2}< \frac{1}{2008.2009}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow S< 1-\frac{1}{2009}< 1\)

\(\Rightarrow S< 1\)

3. \(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)

\(=\frac{1}{5}-\frac{1}{200}\)

\(=\frac{39}{200}\)

\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}>0\)

\(\frac{1}{1^1}+\frac{1}{2^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}<1\)

vậy \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}\)không phải số tự nhiên 

25 tháng 3 2023

4,

Gọi ƯCLN của ( 5n+7, 7n+10) = d

Ta có:

5n+7 ⋮ d

7n+10 ⋮ d

=> 7.(5n+7) ⋮ d

      5.(7n+10) ⋮ d

=> 35n + 49 ⋮ d

     35n + 50 ⋮ d

=> 35n + 50 - (35n + 49) ⋮ d

=> 1 ⋮ d

=> d=1

Vậy phân số 5n+7/ 7n+10 là phân số tối giản (đpcm)