K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

6 tháng 9 2017

tui cũng ko biết làm ai làm giúp với

NV
12 tháng 7 2021

undefined

NV
12 tháng 7 2021

O là trung điểm AB \(\Rightarrow OA=OB=\dfrac{AB}{2}=a\)

Áp dụng định lý Pitago:

\(AD=\sqrt{AO^2+OD^2}=\dfrac{a\sqrt{5}}{2}\)

Xét hai tam giác vuông AOD và ACB có góc A chung

\(\Rightarrow\Delta AOD\sim\Delta ACB\Rightarrow\dfrac{AD}{AB}=\dfrac{AO}{AC}\Rightarrow AC=\dfrac{AO.AB}{AD}=\dfrac{4a\sqrt{5}}{5}\) 

\(BC=\sqrt{AB^2-AC^2}=\dfrac{2a\sqrt{5}}{5}\)

b. Ta có: \(AE=\sqrt{AO^2+OE^2}=a\sqrt{2}\)

\(BE=\sqrt{OB^2+OE^2}=a\sqrt{2}\)

\(\Rightarrow AE^2+BE^2=4a^2=AB^2\)

\(\Rightarrow\Delta ABE\) vuông tại E (Pitago đảo)

\(\Rightarrow\) Hai điểm E và C cùng nhìn AB dưới 1 góc vuông nên bốn điểm A,B,C,E cùng thuộc đường tròn đường kính AB (đpcm)

24 tháng 8 2016

Bạn ơi cho mình hỏi, từ B kẻ BC vuông góc với AD tại đâu vậy?

 

a: BC=căn 5^2+12^2=13cm

b: Xét ΔABE vuông tại B va ΔDBE vuông tại B có

BE chung

BA=BD

=>ΔABE=ΔDBE

=>EA=ED

=>ΔEAD cân tại E

c: Xét ΔBKA vuông tại K và ΔBFD vuông tại F có

BA=BD

góc ABK=góc DBF

=>ΔBKA=ΔBFD

=>BK=BF

=>B là trung điểm của KF

d: góc EAD+góc EAC=90 độ

góc EDA+góc ECA=90 độ

mà góc EAD=góc EDA

nên góc EAC=góc ECA

=>ΔEAC cân tại E

=>EA=EC=ED

=>E là trung điểm của DC

a: BC=13cm

b: Xét ΔABE vuông tại B và ΔDBE vuông tại B có

BE chung

BA=BD

Do đó: ΔABE=ΔDBE

Suy ra: EA=ED

hay ΔEAD cân tại E

c: Xét ΔAKB vuông tại K và ΔDFB vuông tại F có

BA=BD

\(\widehat{ABK}=\widehat{DBF}\)

Do đó: ΔAKB=ΔDFB

Suy ra: BK=BF

hay B là trung điểm của KF

a: BC=13cm

b: Xét ΔABE vuông tại B và ΔDBE vuông tại B có

BA=BD

BE chung

Do đó: ΔABE=ΔDBE

Suy ra: AE=DE

hay ΔAED cân tai E