Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(n\in\)N*. Chứng tỏ rằng:
a) \(\left(5^n-1\right)⋮4\)
b) \(\left(10^{10}+18n-1\right)⋮27\)
a)
Nếu n=0 thì 5n -1 = 1-1 =0 chia hết cho 4
Nếu n=1 thì 5n-1=5-1=4 chia hết cho 4
Nếu n lớn hơn hoặc bằng hai thì 5n -1=(...25)-1=(...24) chia hết cho 4 ( Vì số chia hết cho 4 có hai chữ số tận cùng chia hết cho 4)
=> (5n -1) chia hết cho 4
a) \(n\in\)N*
=>n>1
ta có 5 mũ >1 có tận cùng là 25 mà 25-1=24 chia hết cho 4(dấu hiệu chia hết cho 4)
b)ta có 10...0(10 số 0) -1=99...9(9 số 9)
ta có \(999999999⋮3;9\)
và \(18n⋮3;9\)
=> \(999999999+18n⋮3\cdot9\)
\(hay\)\(\left(10^{10}+18n-1\right)⋮27\)
a)
Nếu n=0 thì 5n -1 = 1-1 =0 chia hết cho 4
Nếu n=1 thì 5n-1=5-1=4 chia hết cho 4
Nếu n lớn hơn hoặc bằng hai thì 5n -1=(...25)-1=(...24) chia hết cho 4 ( Vì số chia hết cho 4 có hai chữ số tận cùng chia hết cho 4)
=> (5n -1) chia hết cho 4
a) \(n\in\)N*
=>n>1
ta có 5 mũ >1 có tận cùng là 25 mà 25-1=24 chia hết cho 4(dấu hiệu chia hết cho 4)
b)ta có 10...0(10 số 0) -1=99...9(9 số 9)
ta có \(999999999⋮3;9\)
và \(18n⋮3;9\)
=> \(999999999+18n⋮3\cdot9\)
\(hay\)\(\left(10^{10}+18n-1\right)⋮27\)