K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2

\(A=1+4+4^2+...+4^{100}\)

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}+4^{101}\)

\(\Rightarrow4A-A=4^{101}-1\)

\(\Rightarrow3A=4^{101}-1\)

\(\Rightarrow A=\dfrac{4^{101}-1}{3}\)

\(\Rightarrow A< B\)

16 tháng 2

cộng nha mấy bạn

 

9 tháng 7 2017

a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)

\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)

\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)

\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)

\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)

\(B=\frac{8}{303}\)

\(A.B=\frac{8}{303}.\frac{3}{200}\)

\(A.B=\frac{1}{2525}\)

b, A = 1/2 x 3/100

B = 2/3 x 4/101

Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2

MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)

Ta có : 1 - 3/100 = 97/100

1 - 4/101 = 97/101

Mà 97/101 < 97/100 => 4/101 > 3/100 (2)

Từ (1) và (2) => B > A

9 tháng 7 2017

a,

\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)

\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)

b,

1/2 < 2/3

3/4 < 4/5

.............

99/100 < 100/101

=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)

7 tháng 7 2017

a) Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};...;\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

b) \(A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)

\(A.B=\frac{1.\left(3.5...99\right).\left(2.4.6...100\right)}{\left(2.4.6...100\right).\left(3.5.7...99\right).101}=\frac{1}{101}\)

c) vì A < b nên A . A < A . B < \(\frac{1}{101}< \frac{1}{100}\)

do đó : A . A  < \(\frac{1}{10}.\frac{1}{10}\)suy ra A < \(\frac{1}{10}\)

19 tháng 1 2016

.>

>            tic nhe cac ban

20 tháng 7 2016

Đặt C = 4+42+43+…+499

A = 1 + C(*)

\(C=4^{100}-1\)

Thay C vào (*)

\(A=4^{100}-1+1=4^{100}\)

Vậy A=B

20 tháng 7 2016

A = 1 + 4 + 42 + 43 + ... + 499 

4A = 4 + 42 + 43 + 44 + ... + 4100

4A - A = (4 + 42 + 43 + 44 + ... + 4100) - (1 + 4 + 42 + 43 + ... + 499)

3A = 4100 - 1 < 4100 = B

=> 3A < B

=> A < B

16 tháng 8 2018

\(A=4+2^2+2^3+...+2^{99}\)

=>  \(2A=8+2^3+2^4+...+2^{100}\)

=>  \(2A-A=\left(8+2^3+2^4+...+2^{100}\right)-\left(4+2^2+2^3+...+2^{99}\right)\)

=>  \(A=2^{100}< 2^{200}=2^{2.100}=4^{100}=B\)

Vậy  A < B

28 tháng 6 2015

mình chỉ làm đc câu a và d thôi bạn có **** k? nếu **** thì liên hệ mình làm cho

8 tháng 7 2016

Ta có:

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

\(...\)

\(\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(\Rightarrow M< N\)