x+1/3=y+2/4=z+3/5 và x+y+z=18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các phần còn lại check lại đề bài.
b) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)
Áp Dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{12}=\frac{24}{12}=2\)
=> \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
=> \(\frac{y+2}{4}=2\Rightarrow y=6\)
=> \(\frac{z+3}{5}=2\Rightarrow z=7\)
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+3y+4z}{4+12+24}=\frac{9}{40}\)
=>\(\frac{x+1}{2}=\frac{9}{40}\Rightarrow x=-0,55\)
=> \(\frac{y+3}{4}=\frac{9}{40}\Rightarrow y=-2,1\)
=>\(\frac{z+5}{6}=\frac{9}{40}\Rightarrow z=-3,65\)
áp dụng t/c dtsbn ta có:
\(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z+3}{5}=\dfrac{x+y+z+1+2+3}{3+4+5}=\dfrac{18+6}{12}=\dfrac{24}{12}=2\)
\(\dfrac{x+1}{3}=2\Rightarrow x=5\\ \dfrac{y+2}{4}=2\Rightarrow y=6\\ \dfrac{z+3}{5}=2\Rightarrow z=7\)
Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5
Áp dụng ... = > x - 1 + y - 2 + z - 3 / 3 + 4 + 5 = x + y + z - 1 - 2 - 3 / 3 + 4 + 5 = 12/12 = 1
Do x - 1/3 = 1 = > x - 1 = 3 => x = 4
\(x+\dfrac{1}{3}=y+\dfrac{2}{4}=z+\dfrac{3}{5}\)
Cách \(1\):
\(\Rightarrow\dfrac{x+\dfrac{1}{3}}{1}=\dfrac{y+\dfrac{2}{4}}{1}=\dfrac{z+\dfrac{3}{5}}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x+\dfrac{1}{3}}{1}=\dfrac{y+\dfrac{2}{4}}{1}=\dfrac{z+\dfrac{3}{5}}{1}=\dfrac{x+\dfrac{1}{3}+y+\dfrac{2}{4}+z+\dfrac{3}{5}}{3}=\dfrac{x+y+z+\dfrac{43}{30}}{3}=\dfrac{18+\dfrac{43}{30}}{3}=\dfrac{583}{90}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{583}{90}\Rightarrow x=\dfrac{553}{90}\)
\(\Rightarrow y+\dfrac{2}{4}=\dfrac{583}{90}\Rightarrow y=\dfrac{269}{45}\)
\(\Rightarrow z+\dfrac{3}{5}=\dfrac{583}{90}\Rightarrow z=\dfrac{529}{90}\)
\(\Rightarrow\) Vậy \(\left(x;y;z\right)\) lần lượt thỏa mãn đề bài là \(\left(\dfrac{553}{90};\dfrac{269}{45};\dfrac{529}{90}\right)\)
Cách \(2\):
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(x+\dfrac{1}{3}=y+\dfrac{2}{4}=z+\dfrac{3}{5}=\dfrac{x+1+y+2+z+3}{3+4+5}=\dfrac{\left(x+y+z\right)+\left(1+2+3\right)}{12}=\dfrac{18+6}{12}=\dfrac{24}{12}=2\)
\(\Rightarrow\dfrac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
\(\Rightarrow\dfrac{y+2}{4}=2\Rightarrow y+2=8\Rightarrow y=6\)
\(\Rightarrow\dfrac{z+3}{5}=2\Rightarrow z+3=10\Rightarrow z=7\)
Vậy \(\left(x;y;z\right)\) lần lượt thỏa mãn yêu cầu đề bài là \(\left(5;6;7\right)\)