K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2024

Gọi \(d=UCLN\left(2n+3,n+1\right)\), khi đó:

\(\left\{{}\begin{matrix}2n+3⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\2n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\) hay \(d=1\)

\(\Rightarrow\dfrac{2n+3}{n+1}\) là phân số tối giản

14 tháng 2 2024

Ta có phân số: \(\dfrac{2n+3}{n+1}\)

Gọi d là ƯCLN(2n+3,n+1) 

⇒ (2n + 3) ⋮ d và (n + 1) ⋮ d 

⇒ (2n + 3) ⋮ d và [2(n+1)] ⋮ d

⇒ (2n + 3) ⋮ d và (2n + 2) ⋮ d

⇒ (2n + 3 - 2n - 2) ⋮ d

⇒ 1 ⋮ d 

⇒ d = 1

Hay ƯCLN(2n+3,n+1) = 1 

Vậy phân số đã cho là phân số tối giản 

5 tháng 3 2016

De \(\frac{5n+3}{3n+2}\)la phan so toi gian (n thuoc N)

thi 5n+3 chia het 3n+2

suy ra 3n+2 chia het 3n+2 suy ra 15n+10 chia het 3n+2

va 5n+3 chia het 3n+2 suy ra 15n+9 chia het 3n+2

suy ra ( 15n+10 - 15n+9 ) chia het 3n+2

suy ra 1 chia het 3n+2

suy ra 3n+2 thuoc uoc cua 1 la 1 ,-1

vi n thuoc N nen 3n+2=1 

suy ra 3n=1-2

suy ra n=-1/3( loai)

vay x thuoc rong

10 tháng 3 2016

Đặt ƯCLN(2n+3; 4n+8) = d

=> 2n + 3 chia hết cho d và 4n + 8 chia hết cho d

=> (4n + 8) - [2.(2n + 3)]  chia hết cho d

=> (4n + 8) - (4n + 6) = 2 chia hết cho d

=> d \(\in\) Ư(2) = {1; 2}

Mà d \(\ne\) 2 do d là ước chung của một số lẻ (2n + 3) và một số chẵn (4n + 8)

Vậy d = 1  \(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản

5 tháng 8 2016

mình pt làm câu sau thôi:

đặt UCLN của (2n+1, 3n+1) d

=> 2n+1 chia hết cho d và 3n+1 chia hết cho d

=> 6n+3 chia hết cho d và 6n+2 chia hết cho d 

=> 1chia hết cho d và d=1 

5 tháng 8 2016

bài tương tự nha bn

Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?

gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.

10 tháng 4 2015

Để phân số n+1/2n+1 là phân số tố giản thì ƯCLN(n+1,2n+1)=1

Giả sử ƯCLN(n+1,2n+1)=d

=>n+1 chia hết cho d

   2n+1 chia hết cho d

=>2.(n+1) chia hết cho d

   2n+1 chia hết cho d

=>2n+2 chia hết cho d

   2n+1 chia hết cho d

=>(2n+2)-(2n+1) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n+1,2n+1)=1

=>Phân số n+1/2n+1 là phân số tối giản

Vậy phân số n+1/2n+1 là phân số tối giản

16 tháng 2 2019

Gọi \(d=UCLN\left(n+1,2n+3\right)\)              \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) \(⋮\)d

                1              \(⋮\)d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

16 tháng 2 2019

Gọi d là ƯCLN\((n+1,2n+3)\)

Ta có : \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2(n+1)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\((2n+3)-(2n+2)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(\frac{n+1}{2n+3}\)là phân số tối giản\((đpcm)\)