Giải hệ phương trình 8x^3y^3+27=18y^3 và 4x^2y+6x=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
Dễ thấy y = 0 không phải là nghiệm của hệ.
Xét \(y\ne0\)
\(\Rightarrow\hept{\begin{cases}8x^3y^3+27=18y^3\left(1\right)\\4x^2y^2+6xy=y^3\left(2\right)\end{cases}}\)
Lấy (1) - 18.(2) ta được
\(8x^3y^3-72x^2y^2-108xy+27=0\)
\(\Leftrightarrow\left(2xy+3\right)\left(4x^2y^2-42xy+9\right)=0\)
Đặt \(xy=a\)
\(\Rightarrow\left(2a+3\right)\left(4a^2-42a+9\right)=0\)
Tới đây thì bạn làm tiếp nhé.
Nhận thấy \(x=0\) ; \(y=0\) ko phải nghiệm của hệ
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)\left(4x^2y^2-6xy+9\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)
Chia vế cho vế:
\(\frac{4x^2y^2-6xy+9}{2x}=18y\Rightarrow4x^2y^2-6xy+9=36xy\)
\(\Rightarrow4x^2y^2-42xy+9=0\)
Nghiệm xấu quá, bạn tự giải nốt :(
\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)^3-18xy\left(2xy+3\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{y^2}{2x}\right)^3-18xy\times\dfrac{y^2}{2x}=18y^3\left(2\right)\\2xy+3=\dfrac{y^2}{2x}\end{matrix}\right.\)
Ta có: \(\left(2\right)\Leftrightarrow y^3\left(\dfrac{y^3}{8x^3}-27\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\left(\text{loại}\right)\\y^3=216x^3\end{matrix}\right.\)
\(\Rightarrow y=6x\). Thay vào (2)
\(\Rightarrow24x^3+6x=36x^2\)
\(\Leftrightarrow6x\left(4x^2-6x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(\text{loại}\right)\\x=\dfrac{3+\sqrt{5}}{4}\left(\text{nhận}\right)\\x=\dfrac{3-\sqrt{5}}{4}\left(\text{nhận}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{9+3\sqrt{5}}{2}\\y=\dfrac{9-3\sqrt{5}}{2}\end{matrix}\right.\left(\text{nhận}\right)\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\dfrac{3+\sqrt{5}}{4};\dfrac{9+3\sqrt{5}}{2}\right);\left(\dfrac{3-\sqrt{5}}{4};\dfrac{9-3\sqrt{5}}{2}\right)\)
- Với \(y=0\) ko phải nghiệm
- Với \(y\ne0\) hai vế của hệ đều khác 0
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)\left(4x^2y^2-6xy+9\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)
Chia vế cho vế:
\(\frac{4x^2y^2-6xy+9}{2x}=18y\Leftrightarrow4x^2y^2-6xy+9=36xy\)
\(\Leftrightarrow4x^2y^2-42xy+9=0\)
Chà nghiệm xấu quá, bạn tự làm tiếp vậy
\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y\left(1\right)\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)^3-18xy\left(2xy+3\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\frac{y^2}{2x}\right)^3-18xy.\frac{y^2}{2x}=18y^3\\2xy+3=\frac{y^2}{2x}\end{matrix}\right.\\ Tacó:\left(2\right)\Leftrightarrow y^3\left(\frac{y^3}{8x^3}-27\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}y=0\left(l\right)\\y^3=216x^3\end{matrix}\right.\\ \Leftrightarrow y=6x.Thayvào\left(2\right):\\ \Leftrightarrow24x^3+6x=36x^2\\ \Leftrightarrow6x\left(4x^2-6x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{3+\sqrt{5}}{4}\\x=\frac{3-\sqrt{5}}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}y=\frac{9+3\sqrt{5}}{2}\\y=\frac{9-3\sqrt{5}}{2}\end{matrix}\right.\)
Vậy nghiệm của phương trình là:
\(\left(x;y\right)=\left(\frac{3+\sqrt{5}}{4};\frac{9+3\sqrt{5}}{2}\right);\left(\frac{3-\sqrt{5}}{4};\frac{9-3\sqrt{5}}{2}\right)\)
Nhân cả 2 vế với y vào phương trình (2) ta được
\(\begin{cases} 8(xy)^3+27=18y^3\\ 4(xy)^2+6xy=y^3 \end{cases} \Rightarrow 8(xy)^3+27=18\left[4(xy)^2+6xy\right]\)
Đây là phương trình bậc 3 ẩn xy.
1) ta tìm cách loại bỏ 18y3, vì y=0 không là nghiệm của phương trình (2) tương đương 72x2y2+108xy=18y3
thế 18y3 từ phương trình (1) vào ta được
8x3y3-72x2y2-108xy+27=0
<=> \(xy=\frac{-3}{2}\)hoặc \(xy=\frac{21-9\sqrt{5}}{4}\)hoặc \(xy=\frac{21+9\sqrt{5}}{4}\)
thay vào (1) ta tìm được x,y
=> y=0 (loại) hoặc \(y=\sqrt[3]{\frac{8\left(xy\right)^3+27}{18}}=\pm\frac{3}{2}\left(\sqrt{5}-3\right)\Rightarrow x=\frac{1}{4}\left(3\pm\sqrt{5}\right)\)
vậy hệ đã cho có nghiệm
\(\left(x;y\right)=\left(\frac{1}{4}\left(3-\sqrt{5}\right);-\frac{3}{2}\left(\sqrt{5}-3\right)\right);\left(\frac{1}{4}\left(3+\sqrt{5}\right);\frac{-3}{2}\left(3+\sqrt{5}\right)\right)\)
1) Cộng vế theo vế ta được
\(2x^2+3xy+y^2-7x-5y+6=0\)
\((x+y-2)(2x+y-3)=0\)
Thay vào phương trình giải bình thường
2) Nhận thấy \(y=0\)không là nghiệm của hpt trên.Vì thế nhân cả 2 vế của (2) cho 18y ta được:\(72x^2y^{2}+108xy=18y^3\) (3)
Lấy (1) trừ (3) ta được:\(8x^3y^3-72x^2y^{2}-108xy+27=0
\)
Đến đây đặt \(a=xy\) giải bình thường
bạn có cách nào để phân tích đa tử nhanh như ở câu a k ạ
\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\left(1\right)\\4x^2y+6x=y^2\left(2\right)\end{matrix}\right.\)
pt (2) \(\Leftrightarrow4x^2y^2+6xy=y^3\) (3)
Thế (3) vào (1), ta được \(8x^3y^3+27=18\left(4x^2y^2+6xy\right)\)
\(\Leftrightarrow8\left(xy\right)^3-72\left(xy\right)^2-108xy+27=0\) (4)
Đặt \(xy=t\) thì (4) thành
\(8t^3-72t^2-108t+27=0\)
\(\Leftrightarrow8t^3+12t^2-84t^2-126t+18t+27=0\)
\(\Leftrightarrow4t^2\left(2t+3\right)-42t\left(2t+3\right)+9\left(2t+3\right)=0\)
\(\Leftrightarrow\left(2t+3\right)\left(4t^2-42t+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{3}{2}\\t=\dfrac{21\pm9\sqrt{5}}{4}\end{matrix}\right.\)
Xét \(t=-\dfrac{3}{2}\) \(\Rightarrow xy=-\dfrac{3}{2}\) . Thay vào (2), ta có:
\(y^3=4\left(xy\right)^2+6xy\) \(=4\left(-\dfrac{3}{2}\right)^2+6\left(-\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow y=0\) \(\Leftrightarrow x=0\)
Nếu \(t=\dfrac{21+9\sqrt{5}}{4}\) thì \(xy=\dfrac{21+9\sqrt{5}}{4}\). Thay vào (2), ta có:
\(y^3=4\left(\dfrac{21+9\sqrt{5}}{4}\right)^2+6\left(\dfrac{21+9\sqrt{5}}{4}\right)\) \(\Rightarrow y=...\Rightarrow x=...\)
Xét tương tự với \(t=\dfrac{21-9\sqrt{5}}{4}\)
Vậy ...
Với lại bạn cần loại nghiệm \(x=y=0\) nhé vì nó không thỏa mãn pt (1).