K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

* C/M : 34n+1 chia hết cho 5

Ta có : 34n+1 = 3 . 34n = 3 . 81n

Vì 81n luôn có tận cùng là 1 

=> 3 . 81 có tận cùng là 3 => 34n+1 + 2 có tận cùng là : 3 + 2 = 5 

Vậy 34n+1 sẽ chia hết cho 5

b , 24n+1 + 1 chia hết cho 5

Ta có : 24n+1 = 2 . 24n = 2 . 16n

Vì 16n luôn có tận cùng là 6 nên => 4 . 6n có tận cùng là 4 => 24n+1 + 1 tận cùng là 4 + 1 = 5 

Vậy 24n+1 chia hết cho 5

c , 92n+1 + 1 chia hết cho 10

Ta có 92n + 1  = 9 . 92n = 9 . 81n 

Vì 81n luôn có tận cùng là 1 => 9 . 81n luôn có tận cùng là 9 

=> 92n+1 + 1 có chữ số tận cùng là 0

=> 92n+1  chia hết cho 10 

b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5

c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

d) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

e) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

15 tháng 7

Chỉ

13 tháng 10 2023

Để chứng minh rằng biểu thức 34n+1 + 2.32n+2 - 21 chia hết cho 64, ta cần sử dụng phương pháp toán học gọi là "chứng minh bằng quy nạp". Bước 1: Kiểm tra điều kiện ban đầu - Khi n = 0, ta có: - Biểu thức ban đầu = 34(0) + 1 + 2.32(0) +2 -21 = -20. - Vì -20 không chia hết cho số nguyên dương nào khác của số nguyên tố lớn nhất trong các số nguyên tố nhỏ hơn hoặc bằng căn bậc hai của số này (tức là căn bậc hai của |64|), nên không thể kết luận rằng biểu thức trên chia hết cho 64. Bước 2: Giả sử giả thiết quy nạp - Giả sử với một giá trị nguyên dương k (k ≥0), biểu thức sau: P(k):=34k+1 +2.32k+2-21 Chia hết cho số nguyên tố lớn nhất trong các số nguyên tố nhỏ hơn hoặc bằng căn bậc hai của |64|. Bước 3: Chứng minh công thức quy nạp - Ta cần chứng minh rằng nếu P(k) chia hết cho 64, thì P(k+1) cũng chia hết cho 64. - Giả sử P(k) chia hết cho 64, tức là tồn tại một số nguyên dương a sao cho: P(k) = 64a. - Ta cần chứng minh rằng tồn tại một số nguyên dương b sao cho: P(k+1) = 34(k+1)+1 +2.32(k+1)+2 -21 = 34k +35 +2.32k +36 -21 = (34k+1 +2.32k+2 -21) + (34*34 + 2*32*36). Vì biểu thức trong ngoặc đơn là giá trị cố định không phụ thuộc vào k, ta có thể viết lại biểu thức trên thành: P(k+1) = (P(k)) + C, trong đó C là một giá trị cố định không phụ thuộc vào k. - Như vậy, ta có: P(k+1) = (P(K)) + C = (64a) + C. - Với a và C là các số nguyên dương, ta có thể viết lại biểu thức trên thành: P(K+1)=b * |64|, trong đó b=a+C. Bước 4: Kết luận Vì đã xác nhận rằng nếu P(k) chia hết cho 64 thì P(k+1) cũng chia hết cho 64, và với giá trị ban đầu n=0, biểu thức không chia hết cho 64, ta có thể kết luận rằng biểu thức 34n+1 +2.32n+2 -21 không chia hết cho 64 với mọi số nguyên dương n.

đúng hay sai e không biết em làm trên chat gpt

19 tháng 8 2023

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

29 tháng 1 2015

2n+3 chia hết cho n- 2

=>(2n+3)- 2. (n- 2) chia hết cho n- 2

=>2n +3 - 2n +4 chia hết cho n- 2

=>7 chia hết cho n- 2

=> n- 2 thuộc Ư(7) ={......}

RỒI KẺ bẢNG Là XONG