K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

11. viết lại đề

12. B

30 tháng 10 2021

C / A

2 tháng 1 2020

19 tháng 6 2016

a,Tính tổng:S=1+52+54+...+5200

=>52S=52+54+56+...+5202

=>25S-S=24S=5202-1

=>S=\(\frac{5^{202}-1}{24}\)

b,So sánh 230+330+430 và 3.2410

3.24^10=3^11.4^15 
4^30=4^15.4^15 
hiển nhiên 4^15>3^11 
=>3.24^10<<4^30<<<2^30+3^20+4^30

12 tháng 6 2017

Ta có: 230+330+430>230+230+430=231+230.230

                                                                 =231(1+229) (1)

Lại có:3.24^10=3^11.2^30 (2)

So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29

                              và 2^30<2^31

=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30

17 tháng 8 2021

bạn ghi sai đề :)))

17 tháng 8 2021

undefined

16 tháng 8 2021

230+330+430 < 3.3210

16 tháng 8 2021

<

4^30=2^30*2^30

=2^30*4^15

3*24^10=3*3^10*8^10=3^11*2^30

mà 4^30>3^11

nên 2^30+3^30+4^30>3*24^10

5 tháng 11 2023

Ta có: 4^30=2^30.2^30=2^30.4^15

3.24^10=3.(3.2^3)^10=2^30.3^11

Ta thấy: 3^11<3^15<4^15 => 4^15>3^11

Vì 4^15>3^11 nên 2^30.4^15>2^30.3^11

=>2^30+3^30+4^30>3.24^10

4 tháng 8 2023

230+230+240 và 3x2410

230+230+240=230(1+1+210)=230(2+210)

3x2410=3x(23)10x310=311x230

Vì 230(2+210)<230x311 nên 230+230+240<3x2410.

11 tháng 8 2019

\(3\times24^{10}\)

\(=3\times\left(2^3\times3\right)^{10}\)

\(=3\times3^{10}\times\left(2^3\right)^{10}\)

\(=3^{11}\times2^{30}\)

\(=3^{11}\times\left(2^2\right)^{15}\)

\(=3^{11}\times4^{15}\)

Vì \(3^{11}\)<\(4^{15}\left(3;4;11;15\inℕ\right)\)

Nên \(3^{11}\times4^{15}\)\(4^{15}\times4^{15}=4^{30}\)

Do đó : \(3\times24^{10}\)\(4^{30}\)

Vậy \(2^{30}+3^{30}+4^{30}\)\(3\times24^{10}\)

4^30=2^30*2^30

=2^30*4^15

3*24^10=3*3^10*8^10=3^11*2^30

mà 4^30>3^11

nên 2^30+3^30+4^30>3*24^10

4^30=2^30*2^30

=2^30*4^15

3*24^10=3*3^10*8^10=3^11*2^30

mà 4^30>3^11

nên 2^30+3^30+4^30>3*24^10