Cho A =\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
B=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\)
C=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\)
Chứng minh A = B - 2C
A=\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
A=\(1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
BC chịu thua