tích phân của pi trên pi chia 2 cos 2xdx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=\int\limits^{\frac{\pi}{2}}_0\left(2x-1\right)\cos^2xdx=\int\limits^{\frac{\pi}{2}}_0\left(2x-1\right)\left(\frac{1+\cos2x}{2}\right)dx=\int\limits^{\frac{\pi}{2}}_0\left(x-\frac{1}{2}\right)dx+\frac{1}{2}\int\limits^{\frac{\pi}{2}}_0\left(2x-1\right)\cos2xdx\)
\(=\left(\frac{1}{2}x^2-\frac{1}{2}x\right)|^{\frac{\pi}{2}}_0+\frac{1}{2}\int\limits^{\frac{\pi}{2}}_0\left(2x-1\right)d\left(\sin2x\right)=\frac{\pi^2}{8}-\frac{\pi}{4}+\frac{1}{2}\left[\left(2x-1\right)\sin2x|^{\frac{\pi}{2}}_0-\int\limits^{^{\frac{\pi}{2}}_0}_0\sin2x.2dx\right]\)
\(=\frac{\pi^2}{8}-\frac{\pi}{4}+\left(0+\cos2x|^{\frac{\pi}{2}}_0\right)=\frac{\pi^2}{8}-\frac{\pi}{4}-1\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
\(\int\limits^{\frac{\pi}{2}}_0x.\sin^2xdx=\int\limits^{\frac{\pi}{2}}_0x\left(\frac{1-\cos2x}{2}\right)dx=\frac{1}{2}\left[\int\limits^{\frac{\pi}{2}}_0xdx-\int\limits^{\frac{\pi}{2}}_0x.\cos3xdx\right]\)
\(=\frac{1}{2}\left(\frac{1}{2}x^2|^{\frac{\pi}{2}}_0-\frac{1}{2}\int\limits^{\frac{\pi}{2}}_0x.d\left(\sin2x\right)\right)\)
\(=\frac{1}{2}\left[\frac{\pi^2}{8}-\frac{1}{2}\left(x.\sin2x\right)|^{\frac{\pi}{2}}_0-\int\limits^{\frac{\pi}{2}}_0\sin2xdx\right]\)
\(=\frac{1}{2}\left[\frac{\pi^2}{8}-\frac{1}{2}\left(0+\frac{1}{2}\cos2x|^{\frac{\pi}{2}}_0\right)\right]=\frac{\pi^2+8}{16}\)
Do \(\left( { - 2\pi ; - \pi } \right) = \left( { - 2\pi ;\pi - 2\pi } \right)\) nên hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)
Đặt \(sinx=t\Rightarrow cosx.dx=dt\) ; \(\left\{{}\begin{matrix}x=\dfrac{\pi}{6}\Rightarrow t=\dfrac{1}{2}\\x=\dfrac{\pi}{2}\Rightarrow t=1\end{matrix}\right.\)
\(I=\int\limits^1_{\dfrac{1}{2}}\dfrac{dt}{1+t}=ln\left|1+t\right||^1_{\dfrac{1}{2}}=ln2-ln\left(\dfrac{3}{2}\right)=-ln3+2ln2\)
\(\Rightarrow ab=-2\)
a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}} = \frac{{\sin \left( {\frac{\pi }{{15}} + \frac{\pi }{{10}}} \right)}}{{\cos \left( {\frac{{2\pi }}{{15}} + \frac{\pi }{5}} \right)}} = \frac{{\sin \frac{\pi }{6}}}{{\cos \frac{\pi }{3}}} = 1\)
b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8} = \frac{1}{2}\sin \frac{\pi }{{16}}.\cos \frac{\pi }{{16}}.\cos \frac{\pi }{8} = \frac{1}{4}\sin \frac{\pi }{8}.\cos \frac{\pi }{8} = \frac{1}{8}\sin \frac{\pi }{4} = \frac{1}{8}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{{16}}\;.\)
a) Vẽ đồ thị:
\(3\sin x + 2 = 0\) trên đoạn \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\) có 5 nghiệm
b) Vẽ đồ thị:
\(\cos x = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) có 6 nghiệm
\(cos\left(\dfrac{\pi}{6}-2x\right)=cos\left(\dfrac{\pi}{2}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{\pi}{6}-2x=\dfrac{\pi}{2}-x+k2\pi\\\dfrac{\pi}{6}-2x=x-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
\(\Rightarrow x=\left\{\dfrac{8\pi}{9};\dfrac{14\pi}{9};\dfrac{5\pi}{3}\right\}\) có 3 nghiệm
Đặt \(\dfrac{\pi}{3}+mx=t\Rightarrow mx=t-\dfrac{\pi}{3}\)
\(\Rightarrow\dfrac{\pi}{6}-mx=\dfrac{\pi}{6}-\left(t-\dfrac{\pi}{3}\right)=\dfrac{\pi}{2}-t\)
Pt trở thành:
\(cos^2t+4cos\left(\dfrac{\pi}{2}-t\right)=4\)
\(\Leftrightarrow1-sin^2t+4sint=4\)
\(\Leftrightarrow sin^2t-4sint+3=0\Rightarrow\left[{}\begin{matrix}sint=1\\sint=3>1\end{matrix}\right.\)
\(\Rightarrow t=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow\dfrac{\pi}{3}+mx=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow mx=\dfrac{\pi}{6}+k2\pi\)
\(\Rightarrow x=\dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)\)
\(0< x< 1\Rightarrow0< \dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)< 1\Rightarrow-\dfrac{1}{12}< k< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\) (1)
Pt có 4 nghiệm pb trên đoạn đã cho khi có 4 giá trị k nguyên thỏa mãn (1)
\(\Rightarrow k=\left\{0;1;2;3\right\}\)
\(\Rightarrow3< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\le4\)
\(\Rightarrow\dfrac{37\pi}{6}< m\le\dfrac{49\pi}{6}\)
Nghiệm trên \(\left(0;\pi\right)\) hay (0;1) nhỉ?
Thực ra 2 cái này cũng ko khác gì nhau về mặt pp giải toán nhưng mà \(\left(0;\pi\right)\) thì tính toán đẹp hơn \(\left(0;1\right)\) nhiều
Ý em là tính \(\int\limits^{\pi}_{\dfrac{\pi}{2}}cos2xdx\) đúng không nhỉ?