tìm n ∈ z biết
a,n - 7⋮ n + 4
b,4n - 5 ⋮ n - 1
c5n + 3 ⋮ 4n + 1
d,6n - 7 ⋮ 3n + 2
giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
\(n^8+4n^7+6n^6+4n^5+n^4=n^4\left(n^4+4n^3+6n^2+4n+1\right)=n^4\left(n+1\right)\left(n^3+3n^2+3n+1\right)=n^4\left(n+1\right)\left(n+1\right)^3=n^4\left(n+1\right)^4=\left[n\left(n+1\right)\right]^4\)
Ta có \(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow\left[n\left(n+1\right)\right]^4⋮16\)
Vậy \(n^8+4n^7+6n^6+4n^5+n^4⋮16\)
`a in ZZ`
`=>6n-4 vdots 2n+1`
`=>3(2n+1)-7 vdots 2n+1`
`=>7 vdots 2n+1`
`=>2n+1 in Ư(7)={+-1,+-7}`
`=>2n in {0,-2,6,-8}`
`=>n in {0,-1,3,-4}`
`b in ZZ`
`=>3n+2 vdots 4n-4`
`=>12n+8 vdots 4n-4`
`=>3(4n-4)+20 vdots 4n-4`
`=>20 vdots 4n-4`
`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
`=>4n-4 in {+-4,+-20}`
`=>n-1 in {+-1,+-5}`
`=>n in {0,2,6,-4}`
`c in ZZ`
`=>4n-1 vdots 3-2n`
`=>2(3-2n)-7 vdots 3-2n`
`=>7 vdots 3-2n`
`=>3-2n in Ư(7)={+-1,+-7}`
`=>2n in {4,0,-4,10}`
`=>n in {2,0,-2,5}`
a) đk: \(n\ne\dfrac{-1}{2}\)
Để \(\dfrac{6n-4}{2n+1}\) nguyên
<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên
<=> \(3-\dfrac{7}{2n+1}\) nguyên
<=> \(7⋮2n+1\)
Ta có bảng
2n+1 | 1 | -1 | 7 | -7 |
n | 0 | -1 | 3 | -4 |
tm | tm | tm | tm |
b)đk: \(n\ne1\)
Để \(\dfrac{3n+2}{4n-4}\) nguyên
=> \(\dfrac{3n+2}{n-1}\) nguyên
<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên
<=> \(3+\dfrac{5}{n-1}\) nguyên
<=> \(5⋮n-1\)
Ta có bảng:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Thử lại | tm | loại | tm | loại |
c) đk: \(n\ne\dfrac{3}{2}\)
Để \(\dfrac{4n-1}{3-2n}\) nguyên
<=> \(\dfrac{4n-1}{2n-3}\) nguyên
<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên
<=> \(2+\dfrac{5}{2n-3}\) nguyên
<=> \(5⋮2n-3\)
Ta có bảng:
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
tm | tm | tm | tm |
Tìm n thuộc Z biết:
a) 4n + 1 / 2n+3
b ) 12n + 7/ 4n+7
c) 9n+4 / 3n+5
a) Ta có :4n+1 = 4n + 6 - 5 = 2(2n+3) - 5.Vì 2(2n+3) chia hết cho 2n+3 nên để thỏa mãn đề thì 5 chia hết cho 2n+3 => 2n+3 \(\in\left\{-5;-1;1;5\right\}\)=> 2n\(\in\left\{-8;-4;-2;2\right\}\)=> n\(\in\left\{-4;-2;-1;1\right\}\)
b) Ta có : 12n+7 = 12n + 21 - 14 = 3(4n+7) - 14.Vì 3(4n+7) chia hết cho 4n+7 nên để thỏa mãn đề thì 14 chia hết cho 4n+7 => 4n+7\(\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
=> 4n\(\in\left\{-21;-14;-9;-8;-6;-5;0;7\right\}\) => n\(\in\left\{-2;0\right\}\)
c) Ta có : 9n+4 = 9n + 15 - 11 = 3(3n+5) - 11.Vì 3(3n+5) chia hết cho 3n+5 nên để thỏa mãn đề thì 11 chia hết cho 3n+5 => 3n+5 \(\in\left\{-11;-1;1;11\right\}\)=> 3n \(\in\left\{-16;-6;-4;6\right\}\)=> n \(\in\left\{-2;2\right\}\)
a, Ta có :
\(n-7⋮n+4\)
Mà \(n+4⋮n+4\)
\(\Leftrightarrow11⋮n+4\)
Vì \(n\in Z\Leftrightarrow n+4\in Z;n+4\inƯ\left(11\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+4=1\\n+4=11\\n+4=-1\\n+4=-11\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=-3\\n=7\\n=-5\\n=-15\end{matrix}\right.\)
Vậy ....................
b, \(4n-5⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5⋮n-1\\4n-4⋮n-1\end{matrix}\right.\)
\(\Leftrightarrow1⋮n-1\)
Vì \(n\in Z\Leftrightarrow n-1\in Z;n-1\inƯ\left(1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n-1=1\\n-1=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\end{matrix}\right.\)
Vậy.............
c, Ta có :
\(5n+3⋮4n+1\)
Mà \(4n+1⋮4n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}20n+12⋮4n+1\\20n+5⋮4n+1\end{matrix}\right.\)
\(\Leftrightarrow7⋮4n+1\)
Vì \(n\in Z\Leftrightarrow4n+1\in Z;4n+1\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4n+1=7\\4n+1=1\\4n+1=-7\\4n+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=\dfrac{3}{2}\left(loại\right)\\n=0\\n=-2\\n=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Vậy ....
d, Ta có :
\(6n-7⋮3n+2\)
Mà \(3n+2⋮3n+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n-7⋮3n+2\\6n+4⋮3n+2\end{matrix}\right.\)
\(\Leftrightarrow11⋮3n+2\)
Vì \(n\in Z\Leftrightarrow3n+2\in Z;3n+2\inƯ\left(11\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3n+2=11\\3n+2=1\\3n+2=-11\\3n+2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=3\\n=-\dfrac{1}{3}\\n=\dfrac{-13}{3}\\n=-1\end{matrix}\right.\)
Vậy ....
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
a) Ta có : n - 7 chia hết cho n + 4
=> n + 4 - 11 chia hết cho n + 4
=> 11 chia hết cho n + 4
=> n + 4 thuộc Ư(11) = {-11;-1;1;11}
=> n thuộc {-15;-5;-3;7}
b) 4n - 5 chia hết cho n - 1
=> 4n - 4 - 1 chia hết cho n - 1
=> 4(n - 1) - 1 chia hết cho n - 1
=> 1 chia hết cho n - 1
=> n - 1 thuộc Ư(1) = {-1;1}
=> n thuộc {0;2}