tìm giá trị của a và b để biểu thức đạt GTNN? và bằng bao nhiêu?
\(P=a^2+2ab+6b^2-2a-32b+2050\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(A=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\left(\dfrac{3}{4}y^2+\dfrac{9}{2}y\right)-\dfrac{9}{4}\\ A=\left[\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(y^2+6y+9\right)-9\\ A=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y+3\right)^2-9\ge9\\ A_{min}=9\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}y=\dfrac{3}{2}\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\Leftrightarrow2a-b=2\cdot3-3\left(-3\right)=12\)
a^2-6b^2=-ab
a^2+ab-6b^2=0
a^2+3ab-2ab-6b^2=0
a(a+3b)-2b(a+3b)=0
(a+3b)(a-2b)=0
suy ra a+3b=0 hoặc a-2b=0
ta có a>b>0 nên a+3b=0 sẽ ko xảy ra
suy ra a-2b=0 ,a=2b
thế vào đa thức M ta có M=2.2b.b/2.(2b)^2-3b^2
M=4b^2/5b^2=4/5
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --