K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

ta co \(\frac{a}{1+b^2c}=\frac{a\left(1+b^2c\right)-ab^2c}{1+b^2c}=a-\frac{ab^2c}{1+b^2c}\ge a-\frac{ab\sqrt{c}}{2}\)

=>\(\frac{a}{1+b^2c}\ge a-\frac{b\sqrt{a.ac}}{2}\ge a-\frac{b\left(a+ac\right)}{4}\)

cmtt=>dpcm

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

25 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\)\(VT-VP=(a-b)^2(2a^2bc+2ab^2c-abc^2+3ac^3+3bc^3)+(a-c) (b-c) (3 a^2b^2+2 a^2b c+2ab^2c+2abc^2)\ge0\)

25 tháng 2 2020

Ủa nãy trong tin nhắn anh nhớ có điều kiện a, b, c > 0 mà? Sao tự nhiên xóa mất-_-

28 tháng 4 2020

Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)

Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)

BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)

<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)

Áp dụng BĐT Schur ta có:

\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)

Khi đó BĐT 

<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)

<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)

<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c

26 tháng 5 2020

Bài 2 

Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)

Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)

=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

15 tháng 10 2021

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

15 tháng 10 2021

uầy e đọc chả hỉu j lun :(

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

NV
16 tháng 2 2020

Sử dụng bổ đề: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Cách chứng minh bổ đề kia bằng Dirichlet google rất nhiều.

Ta có: \(2a^2+2b^2+2c^2+2abc=8\)

\(\Leftrightarrow9=a^2+b^2+c^2+\left(a^2+b^2+c^2+2abc+1\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow9\ge\left(a+b+c\right)^2\Rightarrow a+b+c\le3\)

\(\Rightarrow3\left(a+b+c\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow a+b+c\ge ab+bc+ca=\frac{1}{2}\left[a\left(b+c\right)+b\left(c+a\right)+a\left(b+c\right)\right]\)

\(\Rightarrow a+b+c\ge\frac{1}{2}\left[a.2\sqrt{bc}+b.2\sqrt{ac}+c.2\sqrt{ab}\right]\)

Dấu "=" xảy ra khi \(a=b=c=1\)

16 tháng 2 2020

Tìm ra cái hướng biển đổi giả thiết này chắc lâu nhỉ ạ? Em chứng minh lúc đâu xong nó đưa ra điều cần chứng minh à \(a+b+c\le3\). Xong bí.