K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao điểm của BH và CK là F

Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE và \(\widehat{ADB}=\widehat{AEC}\)

Ta có: \(\widehat{ADB}+\widehat{HBD}=90^0\)(ΔHDB vuông tại H)

\(\widehat{AEC}+\widehat{KCE}=90^0\)(ΔKCE vuông tại K)

mà \(\widehat{ADB}=\widehat{AEC}\)

nên \(\widehat{HBD}=\widehat{KCE}\)

Ta có: \(\widehat{HBD}=\widehat{KCE}\)

\(\widehat{FBC}=\widehat{HBD}\)(hai góc đối đỉnh)

\(\widehat{FCB}=\widehat{KCE}\)(hai góc đối đỉnh)

Do đó: \(\widehat{FBC}=\widehat{FCB}\)

=>ΔFBC cân tại F

=>FB=FC

=>F nằm trên đường trung trực của BC(1)

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,M,F thẳng hàng

=>BH,AM,CK đồng quy tại F

5 tháng 2

Cám ơn bn

19 tháng 7 2020

A B C D E 2 2 1 1 M H K O

A) 

TA CÓ 

\(\widehat{B_1}+\widehat{B_2}=180^o\left(kb\right)\)

\(\widehat{C_1}+\widehat{C_2}=180^o\left(kb\right)\)

mà \(\widehat{B_2}=\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

XÉT \(\Delta\)DAB VÀ \(\Delta EAC\)

\(AB=AC\left(GT\right)\)

\(\widehat{B_1}=\widehat{C_1}\left(CMT\right)\)

\(DB=EC\left(GT\right)\)

=>\(\Delta DAB=\Delta EAC\left(C-G-C\right)\)

\(\Rightarrow DA=EA\)

=>\(\Delta ADE\)CÂN TẠI A

B) VÌ \(\Delta ADE\)CÂn TẠI A

\(\Rightarrow\widehat{D}=\widehat{E}\)

XÉT \(\Delta DHB\)\(\Delta EKC\)CÓ 

\(\widehat{DHB}=\widehat{EKC}=90^o\)

\(DB=EC\left(GT\right)\)

\(\widehat{D}=\widehat{E}\left(CMT\right)\)

=>\(\Delta DHB=\Delta EKC\left(CH-GN\right)\)

\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

GIẢ SỬ GỌI O LÀ GIAO ĐIỂM CỦA AM,BH,CK

TA CÓ

 ​\(\widehat{HBD}=\widehat{CBO}\left(Đ^2\right)\)

\(\widehat{ECK}=\widehat{BCO}\left(Đ^2\right)\)

MÀ \(\widehat{HBD}=\widehat{ECK}\)

=>\(\widehat{CBO}=\widehat{BCO}\)

=> \(\Delta COB\)CÂN TẠI O

MÀ BO LÀ TIA ĐỐI CỦA BH 

      OC LÀ TIA ĐỐI CỦA CK

      OM LÀ TIA ĐỐI CỦA MA

=> \(AM,BH,CK\)ĐỒNG QUY TẠI MỘT ĐIỂM

19 tháng 7 2020

đố các bn mình có mấy giấy khen thi cấp tĩnh ?

mình đoán là 1 giấy khen thi cấp tĩnh 

20 tháng 3 2022

Em mời có lớp 5 thôi

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

8 tháng 5

câu d sao bh và ck giao ở o đc hay vậy

29 tháng 7 2018

a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE

=> ^ABD = ^ACE

TG ABD = TG ACE (c.g.c)

=> ABD=ACE => TG ADE cân(đpcm)

b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)

=> BH=CK (đpcm)

=> DH=KE

* Ta có: AD = AE (vì TG ADE cân)

DH=KE(CMT)

mà AD - DH = AH

     AE - KE = AK

=> AH = AK

và DH=KE ( CMT)

Do đó: HK là đường trung bình của TG ADE

=> HK // DE

c, ý b là BOC?

^HBD=^KCE (TG HBD= TG KCE )

=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)

=> TG OBC cân

24 tháng 1 2016

Em mới lớp 6 thui! Sorry