Cho đa thức f(x) = x4 + 6x3 +11x2 + 6x
a. Phân tích đa thức thành nhân tử
b. Chứng minh với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow xy-y+2-2x=0\)
\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với \(x=1\). Thay vào (2) ta được:
\(2y+y^2+3y=6\)
\(\Leftrightarrow y^2+5y-6=0\)
\(\Leftrightarrow y^2+y-6y-6=0\)
\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)
Với \(y=2\). Thay vào (2) ta được:
\(2x.2+2^2+3.2=6\)
\(\Leftrightarrow4x+4+6=6\)
\(\Leftrightarrow x=-1\)
Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)
Bài 2:
\(f\left(x\right)=x^4+6x^3+11x^2+6x\)
\(=x\left(x^3+6x^2+11x+6\right)\)
\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)
\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.
a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)
Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3
=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}
b/ Chia F(x) cho x-1
\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)
Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại
a. x3+x2+2x2+2x
= (x3+x2)+(2x2+2x)
= x2(x+1)+2x(x+1)
= (x2+2x)(x+1)
= x(x+2)(x+1)
c: \(x^4+x^3-4x^2+x+1\)
\(=x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)
\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]\)
\(=\left(x-1\right)^2\cdot\left(x^2+3x+1\right)\)
a) ( x 2 – 4x + 1)( x 2 – 2x + 3).
b) ( x 2 + 5x – 1)( x 2 + x – 1).
f(x) = x4 + 6x3 +11x2 + 6x
\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)
\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)
\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)
\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)Ta có
\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)
\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)
\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)
\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)
Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương