K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

27 tháng 8 2017

bạn nói rõ 1 chút được ko

17 tháng 1 2019

\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)

17 tháng 1 2019

b,

\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)

Tự xử đoạn còn lại nhé

19 tháng 12 2018

lai hoi bo kien thuc rong ak

26 tháng 5 2017

\(\hept{\begin{cases}x^4+y^2-4x^2-6y+9=0\\x^2y+x^2+2y-22=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-2\right)^2+\left(y-3\right)^2=4\\\left(y-3\right)\left(x^2-2\right)+4\left(x^2-2\right)+4\left(y-3\right)=8\end{cases}}\)

Đặt \(\hept{\begin{cases}x^2-2=a\\y-3=b\end{cases}}\) thì ta có

\(\hept{\begin{cases}a^2+b^2=4\\ab+4\left(a+b\right)=8\end{cases}}\)

Tới đây thì quá đơn giản rồi nhé.

27 tháng 6 2019

1,\(x^2-2y^2-xy=0\)

<=> \(\left(x-2y\right)\left(x+y\right)=0\)

<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)

Sau đó bạn thế vào PT dưới rồi tính 

27 tháng 6 2019

3.  ĐKXĐ  \(x\le1\)\(x+2y+3\ge0\)

.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)

<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)

<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)

Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\)\(x\le1\)nên \(-y^2+x+2y-4< 0\)

=> \(x=2y\)

Thế vào Pt còn lại ta được

\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)

<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)

<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)

<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)

<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )

Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)