1 thẻ vàng + 1 thẻ vàng =?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khi trong đá bóng cầu thủ chơi bẩn
a) Các kết quả có thể xảy ra trong 2 lần lấy tấm thẻ từ 2 hộp được thể hiện ở sơ đồ hình cây như hình dưới đây:
b)
Gọi A là biến cố “Trong 2 thẻ lấy ra không có thẻ màu đỏ nào” là biến cố đối của biến cố “Trong 2 thẻ lấy ra có ít nhất 2 thẻ màu đỏ”
Dựa vào sơ đồ hình cây ta thấy có tất cả 6 kết quả có thể xảy ra, trong đó có 2 kết quả thuận lợi cho I. Do đó: \(P(A) = \frac{2}{6} = \frac{1}{3}\)
Vậy xác suất của biến cố “Trong 2 thẻ lấy ra có ít nhất 2 thẻ màu đỏ” là \(1 - \frac{1}{3} = \frac{2}{3}\)
a) Kí hiệu \({X_1},{X_2},...,{X_7}\) là bảy thẻ màu xanh, \({D_1},{D_2},...,{D_5}\) là 5 thẻ màu đỏ và \({V_1},{V_2}\) là hai thẻ màu vàng.
Ta có không gian mẫu là \(\Omega = \left\{ {{X_1},{X_2},...,{X_7},{D_1},{D_2},...,{D_5},{V_1},{V_2}} \right\}\).
b) Ta có \(A = \left\{ {{D_1},{D_2},{D_3},{D_4},{D_5},{V_1},{V_2}} \right\},B = \left\{ {{X_2},{X_3},{D_2},{D_3},{V_2}} \right\}\).
Đáp án D
+ Nếu các thẻ vàng nằm ở vị trí lẻ thì các thẻ đỏ nằm ở vị trí chẵn
ta có. 7!.7! cách xếp khác nhau
+ Nếu các thẻ vàng nằm ở vị trí chẵn thì các thẻ đỏ nằm ở vị trí lẻ
ta có. 7!.7! cách xếp khác nhau
Vậy có tất cả
Đáp án D
+ Nếu các thẻ vàng nằm ở vị trí lẻ thì các thẻ đỏ nằm ở vị trí chẵn
ta có. 7!.7! cách xếp khác nhau
+ Nếu các thẻ vàng nằm ở vị trí chẵn thì các thẻ đỏ nằm ở vị trí lẻ
ta có. 7!.7! cách xếp khác nhau
Vậy có tất cả:
7!.7!+7!.7! = 50803200 cách
+ Nếu các thẻ vàng nằm ở vị trí lẻ thì các thẻ đỏ nằm ở vị trí chẵn, ta có. 7!.7! cách xếp khác nhau
+ Nếu các thẻ vàng nằm ở vị trí chẵn thì các thẻ đỏ nằm ở vị trí lẻ, ta có. 7!.7! cách xếp khác nhau
Vậy có tất cả 7! . 7! + 7! . 7! = 50803200 cách
Đáp án cần chọn là D
1 thẻ đỏ
2 the vang