Tính hợp lý:
-2/9 - 3/4 + 3/5 + 1/15 + 1/57 + 1/3 - 1/36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{-2}{9}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{15}+\frac{1}{57}+\frac{1}{3}+\frac{-1}{36}\)
\(A=\left(\frac{-2}{9}+\frac{-3}{4}+\frac{1}{3}+\frac{-1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{57}\)
\(A=\left(\frac{-8}{36}+\frac{-27}{36}+\frac{12}{36}+\frac{-1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)+\frac{1}{57}\)
\(A=\frac{-2}{3}+\frac{2}{3}+\frac{1}{57}\)
\(A=\frac{-38}{57}+\frac{38}{57}+\frac{1}{57}\)
\(A=\frac{1}{57}\)
A=\(\dfrac{-2}{9}\)+\(\dfrac{-3}{4}\)+\(\dfrac{3}{5}\)+\(\dfrac{1}{15}\)+\(\dfrac{1}{57}\)+\(\dfrac{1}{3}\)+\(\dfrac{-1}{36}\)
A=(\(\dfrac{-2}{9}\)+\(\dfrac{-3}{4}\)+\(\dfrac{-1}{36}\))+(\(\dfrac{3}{5}\)+\(\dfrac{1}{15}\)+\(\dfrac{1}{3}\))
câu 1 : A=-2/9+-3/4+3/5+1/15+1/57+1/3+-1/36
=(-2/9+-3/4+-1/36)+(3/5+1/15+1/3)
Vậy p/s 1/57 đâu bạn ?
\(\dfrac{-2}{9}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{15}+\dfrac{1}{57}+\dfrac{1}{3}-\dfrac{1}{36}\)
\(=\left(-\dfrac{2}{9}-\dfrac{3}{4}-\dfrac{1}{36}\right)+\left(\dfrac{3}{5}+\dfrac{1}{15}+\dfrac{1}{3}\right)+\dfrac{1}{57}\)
\(=\dfrac{-8-27-1}{36}+\dfrac{9+1+5}{15}+\dfrac{1}{57}\)
\(=-\dfrac{36}{36}+\dfrac{15}{15}+\dfrac{1}{57}\)
\(=\dfrac{1}{57}\)