K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

x,y nguyên => (x+1)(xy-1)=3 <=> x+1 và xy-1 thuộc Ư(3) 

=> x+1 và xy-1 thuộc các cặp ước (-1;-3);(1;3)

x+11-1
x0-2
xy-13-3
yPTVN1

=> x=-2 và y=1

27 tháng 10 2017

câu hai mà lớp 6 làm được thì mọi người cứ cho người đó nếu đúng

27 tháng 10 2017

hình như câu 2 đề sai thì phải

4 tháng 6 2019

A=x^4+y^4-xy\(-\left(x^2y^2+7xy-9\right)\)

A=\(\left(x^2+y^2\right)^2-2x^2y^2-xy\)

A=\(\left(3-xy\right)^2-2x^2y^2-xy\)

A=\(-\left(x^2y^2+7xy-9\right)\)

A=\(-\left(x^2y^2+6xy+9+xy-18\right)\)

A=\(-\left(xy+3\right)^2-xy+18\)

Đến đây đánh giá xy

Có x^2+y^2+xy=3

hay (x+y)^2=3+xy

suy ra xy+3>=0

hay xy>=-3

Như vậy A<=21

Dấu bằng xảy ra khi x=\(\sqrt{3}\),y=\(-\sqrt{3}\)

Chúc bạn học tốt

7 tháng 1 2017

2/ a/ \(y\left(x-1\right)=x^2+2\)

\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)

Làm tiếp nhé

b/ \(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)

\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)

\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)

Làm tiếp nhé

7 tháng 1 2017

1/ \(x^2+x+19=z^2\)

\(\Leftrightarrow4x^2+4x+76=4z^2\)

\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)

\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)

Tới đây đơn giản rồi làm tiếp đi nhé

30 tháng 5 2017

Luôn có \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-x\right)^2\ge0\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge xy+yz+xz\ge-1\)

\(P_{min}=-1\)dấu "=" sảy ra khi (x,y,z) là hoán vị của 3 phần tử (0,0,-1)

30 tháng 5 2017

Ta có:

\(xy+yz+zx=-1\)

\(\Leftrightarrow2\left(xy+yz+zx\right)=-2\)

\(\Leftrightarrow2\left(xy+yz+zx\right)+x^2+y^2+z^2=-2+x^2+y^2+z^2\)

\(\Leftrightarrow P=x^2+y^2+z^2=\left(x+y+z\right)^2+2\ge2\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y+z=0\\xy+yz+zx=-1\end{cases}}\)

Chỉ ra 1 bộ số thỏa mãn cái đấy nhé là: \(\hept{\begin{cases}x=0\\y=1\\z=-1\end{cases}}\)