cho góc yao = 300, góc aob= 1000 và obc = 1100.
chứng minh ya // bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: OC=căn 10^2-8^2=6cm
b: Xét ΔOBD vuông tại O và ΔOBC vuông tại O có
OB chung
OD=OC
=>ΔOBD=ΔOBC
c: Xét ΔBCD có
DM,BO là trung tuyến
DM cắt BO tại K
=>K là trọng tâm
=>BK=2KO
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
b: Ta có: \(\widehat{ABC}=\widehat{ABD}+\widehat{OBC}\)
\(\widehat{ACB}=\widehat{ACE}+\widehat{OCB}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
và \(\widehat{ABD}=\widehat{ACE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOCB cân tại O
a: Xét ΔOAD và ΔOCB có
OA=OC
góc O chung
OD=OB
=>ΔOAD=ΔOCB
b: ΔOAD=ΔOCB
=>góc OAD=góc OCB và góc OBC=góc ODA
Xét ΔYAB và ΔYCD có
góc YAB=góc YCD
AB=CD
góc YBA=góc YDC
=>ΔYAB=ΔYCD
=>YD=YB
Xét ΔOYB và ΔOYD có
OY chung
YB=YD
OB=OD
=>ΔOYB=ΔOYD
=>góc BOY=góc DOY
=>OY là phân giác của góc xOy
1:
Xét ΔCHD có \(\widehat{CHD}+\widehat{HCD}+\widehat{HDC}=180^0\)
=>\(\widehat{HCD}+\widehat{HDC}=180^0-110^0=70^0\)
=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=70^0\)
=>\(\widehat{ADC}+\widehat{BCD}=140^0\)
Xét tứ giác ABCD có
\(\widehat{ADC}+\widehat{BCD}+\widehat{DAB}+\widehat{ABC}=360^0\)
=>\(\widehat{DAB}+\widehat{ABC}=220^0\)
mà \(\widehat{DAB}-\widehat{ABC}=40^0\)
nên \(\widehat{ABC}=\dfrac{220^0-40^0}{2}=90^0\)
=>BA\(\perp\)BC
2:
Xét tứ giác ABCD có
\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)
=>\(\widehat{BCD}+\widehat{ADC}=360^0-220^0=140^0\)
=>\(2\cdot\left(\widehat{KCD}+\widehat{KDC}\right)=140^0\)
=>\(\widehat{KCD}+\widehat{KDC}=70^0\)
Xét ΔCKD có
\(\widehat{CKD}+\widehat{KCD}+\widehat{KDC}=180^0\)
=>\(\widehat{CKD}=180^0-70^0=110^0\)
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó: ΔOAC=ΔOBC
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó; ΔCAD=ΔCBE
Suy ra: CD=CE
hay ΔCDE cân tại C
c: ta có: OD=OE
nên O nằm trên đường trung trực của DE(1)
Ta có: CD=CE
nên C nằm trên đường trung trực của DE(2)
Ta có; FD=FE
nên F nằm trên đường trung trực của DE(3)
Từ (1), (2) và (3) suy ra O,C,F thẳng hàng