K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

Gtnn

\(B+392=2x^2+56x+392\)

\(B+392=2\left(x^2+28x+196\right)\)

\(B+392=2\left(x+14\right)^2\)

B+392>=0

<=> B>=-392 dau bang khi x=-14

GTln

bai nay khong co GTLN vi khi x>0 thi B tang khi x tang 

25 tháng 8 2017
Min =Max=0 <=>x =0
25 tháng 8 2017

Ta có : x2 + 100x + 100

= x2 + 2.50.x + 2500 - 2400

= (x + 50)2 - 2400

Vì \(\left(x+50\right)^2\ge0\forall x\)

Nên : (x + 50)2 - 2400 \(\ge-2400\forall x\)

Vậy Amin = -2400 khi x = -50

15 tháng 12 2016

b) B=x-!x!

B=0 nếu x>=0

B=2x nếu x<0

=> GTLN của B=0 =0 khi x >=0

15 tháng 12 2016

a) A=!2x+6!+!2x+8!\(\ge\)I(2x+6)+(2x+8)! đảng thúc  khi 2x+6 khác dau voi (2x+8) 

A>=!(2x+6)-(2x+8)!=!+-2!=2

2x+6 khác dau voi (2x+8) khi -4<=x<-3

24 tháng 9 2023

Tham khảo:

Đỉnh S có tọa độ: \({x_S} = \dfrac{{ - b}}{{2a}} = \dfrac{{ - 2}}{{2.1}} =  - 1;\,{y_S} = {\left( { - 1} \right)^2} + 2.( - 1) + 3 = 2.\)

Hay \(S\left( { - 1;2} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số đạt giá trị nhỏ nhất bằng \(2\).

20 tháng 8 2020

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)

Để M đạt GTNN => \(\frac{52}{\left(x+1\right)^2+3}\)đạt GTLN

=> \(\left(x+1\right)^2+3\)(*) đạt GTNN

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+3\ge3\)

=> Min(*) = 3 <=> x + 1 = 0 => x = -1

=> MinM = \(2+\frac{52}{\left(-1+1\right)^2+3}=2+\frac{52}{3}=\frac{58}{3}\), đạt được khi x = -1

Mình không chắc nha -.-

20 tháng 8 2020

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}\)

Để M đạt GTLN  => \(\frac{52}{x^2+2x+4}\)(**) đạt GTLN 

Hay \(x^2+2x+4\)(*) đạt GTNN 

Ta có : \(x^2+2x+4=\left(x^2+2x+1\right)+3=\left(x+1\right)^2+3\)

Do \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow\left(x+1\right)^2+3\ge3\forall x\)

Nên GTNN (*) = 3 khi x + 1 = 0 <=> x = -1

Suy ra GTLN (**) = 52/3 khi x = -1

Vậy nên GTLN M = 2 + 52/3 = 58/3 khi x = -1

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

giá triwj nhỏ nhất của A = 2 

B = 0

C=4

A có giá trị nhỏ nhất bằng 2 khi x=-1

B có giá trị nhỏ nhất là 0 khi x=1

C có giá trị nhỏ nhất là 4 khí x=1

26 tháng 8 2020

A = x2 + 4x + 7

   = ( x2 + 4x + 4 ) + 3

   = ( x + 2 )2 + 3

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 3 <=> x = -2

B = 2x2 - 6x 

   = 2( x2 - 3x + 9/4 ) - 9/2

   = 2( x - 3/2 )2 - 9/2

2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2 

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinB = -9/2 <=> x = 3/2

C = -2x2 + 8x - 15

    = -2( x2 - 4x + 4 ) - 7

    = -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

1 tháng 12 2021

a,Ta có B = x2-x+x = x2

Mà x2 ≥ 0 với ∀ x.Dấu ''='' xảy ra <=> x=0

Vậy Min B = 0 tại x = 0

b,Ta có 4x-x2+3 = -x2+4x-4+7

                          = -(x2-4x+4)+7

                          = -(x-2)2+7

Mà (x-2)2 ≥ 0 với ∀ 0 => -(x-2)2 ≤ 0 => -(x-2)2+7 ≤ 7

Dâu ''='' xảy ra <=> -(x-2)2 = 0 <=> x-2 = 0 <=> x=2

Vậy Max c = 7 tại x = 2.

c,Ta có 2x-2x2-5 = -x2+2x-1-x2-4

                           = -(x-1)2-x2-4

Mà (x-1)2 ≥ 0 => -(x-1)2 ≤ 0

       x2 ≥ 0 => -x2 ≤ 0

Ta có D đạt GTLN <=> -(x-1)2 = 0 hoặc -x2 = 0

-Xét -(x-1)2 = 0 <=> x = 1. Khi đó ta có D = -5

-Xét -x2 = 0 <=> x = 0. Khi đó ta có D = -5

Vậy Max D = -5 tại x = 0 hoặc x = 1