Cho tam giác ABC, kẻ tia phân giác Bx của \(\widehat{B}\). Tia Bx cắt tại M. từ M kẻ đường thẳng //(song song) AB cắt BC tại N. Từ N kẻ Ny // Bx
CMR: a) \(\widehat{xBC}\)= \(\widehat{BMN}\)
b) Tia Ny là tia phân giác của \(\widehat{MNC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, kẻ phân giác Bx của góc B. Bx cắt AC tại M. Từ M kẻ đường thẳng song song với AB, cắt BC tại N. Từ N kẻ Ny song song với Bx. Chứng minh:
a, Góc xBC = góc BMN
b, Tia Ny là tia phân giác của góc MNC
Ta có: góc BMN = góc xBA (so le trong, MN song song AB) mà góc xBA = góc xBC do BM là phân giác
Vậy góc xBC = BMN
a) Theo đề bài, vì đường thẳng đi qua M cắt BC tại N => MN // AB => \(\widehat{BMN}=\widehat{ABM}\left(so-le-trong\right)\left(1\right)\)
Vì BM là tia phân giác của \(\widehat{B}\)=> \(\widehat{ABM}=\widehat{MBN}\left(2\right)\)
Từ (1) và (2) => \(\widehat{BMN}=\widehat{MBN}\Leftrightarrow\widehat{xBC}=\widehat{BMN}\)
b) Vì Ny // Bx => \(\hept{\begin{cases}\widehat{BMN}=\widehat{MNy}\left(so-le-trong\right)\\\widehat{MBN}=\widehat{yNC}\left(đồng-vị\right)\end{cases}}\)
Mà theo phần a), \(\widehat{BMN}=\widehat{MBN}\Rightarrow\widehat{MNy}=\widehat{yNC}\)
Vậy Ny là tia phân giác của \(\widehat{MNC}\)
~~~ Chắc chắn đúng nha cậu :3 Tiếc gì 1 tk cho tớ nào?
Hình đây cậu nhé =^=