\(\frac{5}{1\cdot3}\)+\(\frac{5}{3\cdot5}\)+...+\(\frac{5}{1995\cdot1997}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT = 1/2.( 1-1/3+1/3-1/5+...+ 2/49-1/51)
= 1/2. 50/51
=> 6x-5/10+10 = 25/51
............. Tụ làm phàn còn lại nhé
Nhân cả 2 vê với 2 ta được:
\(\frac{2.\left(6x-5\right)}{20}\)=\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+...+\(\frac{2}{49.51}\)
<=>\(\frac{6x-5}{10}\)=\(1-\frac{1}{3}+\)\(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)
<=>\(\frac{6x-5}{10}=1-\frac{1}{51}\)
<=>\(6x-5=\frac{50}{51}.10\)
<=>\(x=\frac{755}{306}\)
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
Ta có: \(\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\right)\cdot\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\cdot\left(x-1\right)=\frac{3x}{5}-\frac{7}{15}\)
\(\Leftrightarrow\frac{14}{15}\cdot\left(x-1\right)=\frac{9x-7}{15}\)
\(\Leftrightarrow x-1=\frac{9x-7}{15}:\frac{14}{15}=\frac{9x-7}{14}\)
hay \(x=\frac{9x-7}{14}+1=\frac{9x-7}{14}+\frac{14}{14}=\frac{9x+7}{14}\)
\(\Leftrightarrow x\cdot14=9x+7\)
\(\Leftrightarrow14x-9x-7=0\)
\(\Leftrightarrow5x-7=0\)
\(\Leftrightarrow5x=7\)
hay \(x=\frac{7}{5}\)
Vậy: \(x=\frac{7}{5}\)
\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(E=\frac{1}{1}-\frac{1}{99}\)
\(E=\frac{98}{99}\)
E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{11}{11}-\frac{1}{11}\)
\(=\frac{10}{11}\)
Chúc bạn học tốt !!!