K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1

a) Gọi J là tâm đường tròn (AP)

 Xét đường tròn (J) có đường kính AP, \(L\in\left(J\right)\) nên \(\widehat{ALP}=90^o\) hay \(AH\perp LP\) tại L.

 Lại có \(AH\perp BC\) nên LP // BC.

 \(\Rightarrow\widehat{DPL}=\widehat{DEB}\) 

 Mặt khác, \(\widehat{DEB}=\dfrac{sđ\stackrel\frown{AC}+sđ\stackrel\frown{BD}}{2}\) \(=\dfrac{sđ\stackrel\frown{AC}+sđ\stackrel\frown{CD}}{2}\) \(=\dfrac{sđ\widehat{AD}}{2}\) \(=\widehat{AGD}\)

 Tứ giác AGLP nội tiếp nên \(\widehat{DPL}=\widehat{AGL}\)

 Từ đó suy ra \(\widehat{AGD}=\widehat{AGL}\)

 Hơn nữa, L, D nằm cùng phia đối với đường thẳng GA nên suy ra G, L, D thẳng hàng (đpcm).

a: AE là phân giác của góc BAC

=>EB=EC

mà OB=OC

nên OE là trung trực của BC

=>OE vuông góc BC

=>OE//AH

b: Điểm M ở đâu vậy bạn?

30 tháng 11 2023

a: Xét (O) có

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)

=>MB=MC

=>M nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ADC}=\widehat{ABC}\)

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

\(\widehat{ADC}=\widehat{ABH}\)

Do đó: ΔACD đồng dạng với ΔAHB

=>\(\widehat{CAD}=\widehat{HAB}\)

\(\widehat{BAH}+\widehat{HAM}=\widehat{BAM}\)

\(\widehat{CAD}+\widehat{MAD}=\widehat{CAD}\)

mà \(\widehat{BAH}=\widehat{CAD}\) và \(\widehat{BAM}=\widehat{CAD}\)

nên \(\widehat{HAM}=\widehat{MAD}\)

=>\(\widehat{IAM}=\widehat{DAM}\)

=>AM là phân giác của góc IAD

c: Xét (O) có

\(\widehat{IAM}\) là góc nội tiếp chắn cung IM

\(\widehat{DAM}\) là góc nội tiếp chắn cung DM

\(\widehat{IAM}=\widehat{DAM}\)

Do đó: \(sđ\stackrel\frown{IM}=sđ\stackrel\frown{DM}\)

=>IM=DM

=>M nằm trên đường trung trực của DI(3)

OI=OD

=>O nằm trên đường trung trực của DI(4)

Từ (3) và (4) suy ra OM là đường trung trực của DI

=>OM\(\perp\)DI

mà OM\(\perp\)BC

nên DI//BC

21 tháng 3 2018

Từng bài 1 thôi bạn!

A B C J O N K H M

vẽ trên đt thông cảm!

Do đường tròn ngoại tiếp tam giác ABC có tâm là O

Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)

Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\)

Mà AK là phân giác của \(\widehat{BAC}\)

=> AK là phân giác 

\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)

Theo bổ đề trên ta có tứ giác ANMO là hình bình hành

=> HK//AO

=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)

Hay tam giác NAK cân tại N mà N là trung điểm AH

=> AN=NH=NK

=> \(\Delta AHK\)vuông tại K

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

14 tháng 1 2019

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

10 tháng 5 2021

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooonnnnnnnnnnnnnnnnnn

11 tháng 5 2021

Vì 1 + 1 = 2 nên 2 + 2 = 4 

Đáp số : Không Biết