giải pt ạ
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(2x-5=t^2\)ta có \(x=\frac{t^2+5}{2}\)thay giá trị của x vào phương trình đã cho được:
\(\sqrt{\frac{t^2+5}{2}-2+t}+\sqrt{\frac{t^2+5}{2}+2+3t}=7\sqrt{2}\)
hay \(\sqrt{t^2+5-2+2t}+\sqrt{t^2+5+4+6t}=14\)
\(\sqrt{t^2+2t+1}+\sqrt{t^2+6t+9}=14\)
\(\sqrt{\left(t+1\right)^2}+\sqrt{\left(t+3\right)^2}=14\)
\(t+1+t+3=14\)
\(2t+4=14\)
2t=10
t=5
Từ đó \(x=\frac{25+5}{2}=15\)
Hong Ra On chuyên gì thế hả sao gọi mình là sao
\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\sqrt{\dfrac{\left(y-3\right)^2}{2}}+\sqrt{\dfrac{\left(y+1\right)^2}{2}}=2\sqrt{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\left|\dfrac{\left(y-3\right)}{\sqrt{2}}\right|+\left|\dfrac{\left(y+1\right)}{\sqrt{2}}\right|=\left|\dfrac{4}{\sqrt{2}}\right|=2\sqrt{2}=VP\end{matrix}\right.\)đẳng thức khi
\(7\ge x\ge\dfrac{5}{2}\)
kết luận
nghiệm của pt là : \(7\ge x\ge\dfrac{5}{2}\)
a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)
Bình phương 2 vế:
\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)
\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=-1;x=-5\)
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)
Phương trình trở thành:
\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)
a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)
\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)
vậy \(S=\left\{-1;-2;-5\right\}\)
a/ \(\Leftrightarrow\sqrt{x^2+x+3}-\sqrt{x^2+2}+\sqrt{x^2+x+8}-\sqrt{x^2+7}=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{x+1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}\right)=0\)
\(\Leftrightarrow x+1=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=-1\)
b/
\(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\) (1)
\(\Rightarrow7-x^2+x\sqrt{x+5}=3-2x-x^2\)
\(\Leftrightarrow x\sqrt{x+5}=-2x-4\)
\(\Rightarrow x^2\left(x+5\right)=4x^2+16x+16\)
\(\Rightarrow x^3+x^2-16\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Do các phép biến đổi ko tương đương nên cần thay nghiệm vào (1) để kiểm tra
c/ ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
d/ Đề bài là \(2\sqrt{2x+3}\) hay \(2\sqrt{2x-3}\) bạn?
e/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\sqrt{x+3+2\sqrt{x+3}+1}=x+4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+3}+1\right)^2}=x+4\)
\(\Leftrightarrow\sqrt{x+3}+1=x+4\)
\(\Leftrightarrow x+3-\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-3}+3\right|=14\)
\(\Leftrightarrow2\sqrt{2x-5}=10\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\)
\(\Leftrightarrow x=15\)