Tìm số tự nhiên n sao cho:
\(2^8+2^{11}+2^n\)
là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 28 + 211 + 2n = 28.(1 + 23 + 2n-8) = (23)2.(1 + 2.22.1 + 24 +2n-8 - 24) = (23)2.((1 + 22)2 + 2n-8 - 24)
=> A là số chính phương <=> 2n-8=24=> n-8=4=> n=12
Ta có: A = 28 + 211 + 2n = 28.(1 + 23 + 2n-8) = (23)2.(1 + 2.22.1 + 24 +2n-8 - 24) = (23)2.((1 + 22)2 + 2n-8 - 24)
=> A là số chính phương <=> 2n-8=24=> n-8=4=> n=12
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
tạo hằng đẳng thức:
= (2^4)^2 + 2.2^4.2^6 + (2^6)^2 = (2^4 + 2^6)^2
=> n = 12
tạo hằng đẳng thức:
= (2^4)^2 + 2.2^4.2^6 + (2^6)^2 = (2^4 + 2^6)^2 là số chính phương
=> n=12
Đặt A = 28 + 211 + 2n = (24)2.(1 + 8 + 2n-8) = (24)2.(9 + 22n-8)
Để A là SCP thì (9 + 2n-8) phải là SCP
Đặt k2 = 9 + 22n-8
=> k2 - 32 = 2n-8
=> (k - 3)(k + 3) = 2n-8 (*)
Xét hiệu (k - 3) - (k + 3) = 6
=> k - 3 và k + 3 là các lũy thừa của 2 và có hiệu là 6
=> k + 3 = 8 và k - 3 = 2
=> k = 5; thay vào (*) ta có: 2.3 = 2n-8
=> n = 12
Thử lại ta có 28 + 211 + 212 = 802 (đúng)
Giả sử : 28 + 211 + 2n = a2 với a \(\in\) N thì :
2n = a2 - 48 \(\Leftrightarrow\) 2n = ( a - 48 ) ( a + 48 )
Từ đó , ta có : a + 48 = 2p
a - 48 = 2q , với p , q \(\in\) N và p + q = n , p > q
suy ra : 2p - 2q = 96 \(\Leftrightarrow\) 2q( 2q - p - 1 ) = 25 . 3
\(\Rightarrow\) q = 5 và p - q = 2 \(\Rightarrow\) p = 7 \(\Rightarrow\) n = 5 + 7 = 12
Thử lại ta có : 28 + 211 + 2n = 802
Do đó , n = 12
HOK TỐT !!!
Gọi biểu thữ trên là A
Ta có: A = 28 + 211 + 2n = 28.(1 + 23 + 2n-8)
= (23)2.(1 + 2.22.1 + 24 +2n-8 - 24)
= (23)2.((1 + 22)2 + 2n-8 - 24)
=> A là số chính phương
<=> 2n-8=24
=> n-8=4
=> n=12
Đặt A = 2^8 + 2^11 + 2^n = (2^4)^2.(1 + 8 + 2^n-8) = (2^4)^2.(9 + 2^n-8)
Để A là SCP thì (9 + 2^n-8) phải là SCP
Đặt k^2 = 9 + 2^n-8
=> k^2 - 3^2 = 2^n-8
=> (k - 3)(k + 3) = 2^n-8 (*)
Xét hiệu (k - 3) - (k + 3) = 6
=> k - 3 và k + 3 là các lũy thừa của 2 và có hiệu là 6
=> k + 3 = 8 và k - 3 = 2
=> k = 5; thay vào (*) ta có: 2.3 = 2^n-8
=> n = 12
Thử lại ta có 2^8 + 2^11 + 2^12 = 80^2 (đúng)