K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 1

Lời giải:

Nếu $x< 22$ thì $x-22< 0, x-23< 0\Rightarrow (x-22)(x-23)>0$

Nếu $x> 23$ thì $x-22>0, x-23>0\Rightarrow (x-22)(x-23)>0$

Nếu $x=22$ hoặc $x=23$ thì $(x-22)(x-23)=0$

Từ đây suy ra $P=(x-22)(x-23)$ nhận giá trị nhỏ nhất bằng 0 khi $x=22$ hoặc $x=23$.

4 tháng 10 2019

\(A=|2x-2|+|2x-2013|\)

\(=|2x-2|+|2013-2x|\ge|2x-2+2013-2x|\)

\(\Rightarrow A\ge2011\)

Dấu "="xảy ra \(\Leftrightarrow\left(2x-2\right)\left(2013-2x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2x-2< 0\\2013-2x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>\frac{2013}{2}\end{cases}}\)( loại )

\(\Leftrightarrow1\le x\le\frac{2013}{2}\)mà \(x\in Z\)

\(\Rightarrow x\in\left\{1;2;...;1006\right\}\)

Vậy \(A_{min}=2011\)\(\Leftrightarrow x\in\left\{1;2;...;1006\right\}\)

4 tháng 10 2019

giúp mình với các bạn ơi

mình sắp phải nộp rồi

29 tháng 3 2021

A = | 2x - 2 | + | 2x - 2013 |

= | 2x - 2 | + | 2013 - 2x |

≥ | 2x - 2 + 2013 - 2x | = | 2011 | = 2011

Đẳng thức xảy ra <=> ( 2x - 2 )( 2013 - 2x ) ≥ 0 => 1 ≤ x ≤ 2013/2

Vậy ...

8 tháng 7 2016

Giải PT: \(x^2+3y^2+2xy-8x-16y+23=0\)

\(\Leftrightarrow x^2+y^2+16+2xy-8x-8y+2y^2-8y+7=0\)

\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y^2-4y+4\right)-1=0\)

\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y-2\right)^2-1=0\)

\(\Rightarrow\left(x+y-4\right)^2=-2\left(y-2\right)^2+1\le1\)

Dấu "=" xảy ra khi : \(-2\left(y-2\right)^2=0\Rightarrow y=2\)

\(\Rightarrow\)\(\text{│}x+y-4\text{│}\le1\)

\(\Rightarrow-1\le x+y-4\le1\)

\(\Rightarrow3\le x+y\le5\)

Vậy Bmin=3 khi y=2;x=1

       Bmax=5 khi y=2;x=3

24 tháng 4 2017

muon 1/3-2x la gia tri nho nhat thi 3-2x la gia tri lon nhat nen x la so nho nhat trong tap hop Z

nho k cho minh voi nha

24 tháng 2 2019

Áp dụng bất đẳng thức trị tuyệt đối,ta có:

\(\left|2x+2\right|+\left|2x-2019\right|=\left|2x+2\right|+\left|2019-2x\right|\)

\(\ge\left|2x+2+2019-2x\right|\)

\(=2021\)

Dấu bằng xảy ra khi và chỉ khi:

\(\left(2x+2\right)\left(2x-2019\right)\ge0\)

\(\Rightarrow-1\le x\le\frac{2019}{2}\)

\(\Rightarrow-1\le x\le1009\)

Vậy \(A_{min}=2021\Leftrightarrow-1\le x\le1009\)

20 tháng 11 2019

zZz Phan Gia Huy zZz

Dấu \("="\Leftrightarrow-1\le x\le1009,5\)

19 tháng 3 2020

a, \(M=\left(x-2\right)^2-22\)

Có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)

hay GTNN của M là -22 

Dấu "=" xảy ra tại  \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy GTNN của M là -22 tại x=2.

b, \(N=9-|x+3|\)

Có: \(|x+3|\ge0\forall x\)

\(\Rightarrow9-|x+3|\le9\forall x\)

hay GTLN của N là 9

Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy GTLN của N là 9 tại x = -3.

14 tháng 4 2018

Các bạn giúp mình vs, mình đang cần gấp

15 tháng 4 2018

Ta có : \(P=\frac{x^2-10x+22}{\left(x-3\right)^2}\)

Đặt : \(x-3=y\Leftrightarrow x=y+3\)

\(P=\frac{\left(y+3\right)^2-10\left(y+3\right)+22}{y^2}\)

\(P=\frac{y^2+6y+9-10y-30+22}{y^2}\)

\(P=\frac{y^2-4y+1}{y^2}\)

\(P=\frac{y^2}{y^2}-\frac{4y}{y^2}+\frac{1}{y^2}\)

\(P=1-\frac{4}{y}+\frac{1}{y^2}\)

\(P=\left(\frac{1}{y^2}-\frac{4}{y}+4\right)-3\)

\(P=\left(\frac{1}{y}-2\right)^2-3\)

Mà \(\left(\frac{1}{y}-2\right)^2\ge0\forall y\)

\(\Rightarrow P\ge-3\)

Dấu "=" xảy ra khi : 

\(\frac{1}{y}-2=0\Leftrightarrow\frac{1}{y}=2\Leftrightarrow y=\frac{1}{2}\) 

Lại có : \(x=y+3\)

\(\Rightarrow x=\frac{7}{2}\)

Vậy \(P_{Min}=-3\Leftrightarrow x=\frac{7}{2}\)