P(x) = x\(^5\)- 3x\(^{^2}\)+7x\(^4\)-9x\(^3\)+x\(^2\)-\(\frac{1}{4}\)x;
Q(x) = 5x\(^4\)-x\(^5\)+x\(^2\)-2x\(^3\)+3x\(^2\)-\(\frac{1}{4}\)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.
b) Tính P(x) + Q(x) và P(x) – Q(x)
c) Tính P(1), Q(0)
Giúp mk với mk đang cần gấp
Bài làm
a) Ta có:
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
c) Ta có:
\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)
\(P\left(1\right)=-\frac{13}{4}\)
Vậy giá trị của biểu thức P = -13/4 khi x = 1
\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(Q\left(0\right)=-\frac{1}{4}\)
Cảm ơn bạn nha!