K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 1 2024

\(\Delta=\left(2m-3\right)^2-4\left(2m-4\right)=\left(2m-5\right)^2\ge0;\forall m\)

Pt luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-3\\x_1x_2=2m-4\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{2m-3}{2m-4}=\dfrac{1}{2}\)

\(\Rightarrow4m-6=2m-4\)

\(\Leftrightarrow2m=2\)

\(\Leftrightarrow m=1\) (thỏa mãn)

NV
5 tháng 3 2023

\(a+b+c=1-\left(2m+1\right)+2m=0\)

\(\Rightarrow\) Phương trình có 2 nghiệm \(x=1\) ; \(x=2m\)

Để pt có 2 nghiệm pb \(\Rightarrow2m\ne1\Rightarrow m\ne\dfrac{1}{2}\)

\(\left|x_1^2-x_2^2\right|=35\)

\(\Leftrightarrow\left|4m^2-1\right|=35\)

\(\Leftrightarrow\left[{}\begin{matrix}4m^2-1=35\\4m^2-1=-35\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=9\\m^2=-\dfrac{17}{2}\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=3\\m=-3< 0\left(loại\right)\end{matrix}\right.\)

NV
21 tháng 8 2021

\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)

(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))

Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)

\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\) 

\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)

Thế vào \(x_1x_2=2m\)

\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)

\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)

\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)

10 tháng 5 2022

`1)`

$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb

$b\big)$

Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)

\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)

\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)

17 tháng 6 2022

Cái này phân tích đề ra là lm được bạn nhé

 

24 tháng 3 2022

\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)

 với mọi m => pt có 2 nghiệm phân biệt x1 và x2

theo Viet (điều kiện m > -1/2)

\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)

\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)

dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)

\(x^2-2\left(m-1\right)x-2m=0\)

\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)

\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

 

24 tháng 2 2022

\(\Delta'=9-\left(2m-1\right)=-2m+10\)

Để pt có 2 nghiệm x1 ; x2 

\(10-2m\ge0\Leftrightarrow-2m\ge-10\Leftrightarrow m\le5\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=2m-1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)\left(3-x_2+3-x_1\right)+2016=0\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[6-\left(x_1+x_2\right)\right]+2016=0\)

bạn kiểm tra lại đề