K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)

10^2012+10>10^2011+10

=>9/10^2012+10<9/10^2011+10

=>-9/10^2012+10>-9/10^2011+10

=>A>B

21 tháng 2 2021

Sửa đề: Chứng mình chia hết 24

Tách: 24=8.3

A=102012+102011+102010+102009+8A=102012+102011+102010+102009+8

A=10...08A=10...083 (1)

A=10...008A=10...008⋮8 (Vì: 0088) (2)

Từ (1) và (2) ⇒A24 Vì: (3,8)

⇒đpcm

21 tháng 2 2021

tham khảo

https://olm.vn/hoi-dap/detail/48844794829.html

Ai trả lời được cho tớ bít nhé iu mọi người nhìu!

Chả lời đúng tui t i c k (Ghép các chữ ấy lại)

21 tháng 9 2021

Áp dụng bất đẳng thức Cauchy:

\(a\sqrt{b-1}=a\sqrt{1\left(b-1\right)}\le a\dfrac{1+b-1}{2}=\dfrac{ab}{2}\left(1\right)\)

CMTT: \(b\sqrt{a-1}\le\dfrac{ab}{2}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\left(đpcm\right)\)

\(ĐTXR\Leftrightarrow a=b=1\)

21 tháng 9 2021

Sửa lại \(ĐTXR\Leftrightarrow a=b=2\)

b) Ta có: \(x^2-4x+6\)

\(=x^2-4x+4+2\)

\(=\left(x-2\right)^2+2\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-2\right)^2+2\ge2>0\forall x\)

hay \(x^2-4x+6>0\forall x\)

Vậy: phương trình \(x^2-4x+6=0\) vô nghiệm

c) Ta có: \(\left|x-2\right|=-1\)

mà \(\left|x-2\right|>0>-1\forall x\)

nên phương trình \(\left|x-2\right|=-1\) vô nghiệm(đpcm)

d) Ta có: \(\left|x\right|=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x\\x=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-x=0\\x+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=0\left(luônđúng\right)\\2x=0\end{matrix}\right.\Leftrightarrow x\in R\)

Vậy: S={x|\(x\in R\)}

4 tháng 2 2021

Cảm ơn nha

 

5 tháng 5 2022

Giải giúp tui trong 5 phút ik

5 tháng 5 2022

-Đề sai.

NV
2 tháng 8 2021

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)

Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)

2 tháng 8 2021

\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)

\(VT\ge VP\)(giả thiết)

\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)

\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)

\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))

\(\)