giải bất phương trình
a) \(log_5x>6\)
b) \(log_7x< 2\)
c) \(log_2x\le3\)
d) \(log_{\dfrac{1}{3}}x>27\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt t = 13x > 0 ta được phương trình:
13t2 – t – 12 = 0 ⇔ (t – 1)(13t + 12) = 0
⇔ t = 1 ⇔ 13x = 1 ⇔ x = 0
b)
Chia cả hai vế phương trình cho 9x ta được phương trình tương đương
(1+(23)x)(1+3.(23)x)=8.(23)x(1+(23)x)(1+3.(23)x)=8.(23)x
Đặt t=(23)xt=(23)x (t > 0) , ta được phương trình:
(1 + t)(1 + 3t) = 8t ⇔ 3t2 – 4t + 1 = 0 ⇔ t∈{13,1}t∈{13,1}
Với t=13t=13 ta được nghiệm x=log2313x=log2313
Với t = 1 ta được nghiệm x = 0
c) Điều kiện: x > 2
Vì nên phương trình đã cho tương đương với:
[log3(x−2)=0log5x=1⇔[x=3x=5[log3(x−2)=0log5x=1⇔[x=3x=5
d) Điều kiện: x > 0
log22x – 5log2x + 6 = 0
⇔(log2x – 2)(log2x – 3) = 0
⇔ x ∈ {4, 8}
Với điều kiện x>0 ta có :
\(\Leftrightarrow\) \(\left(\log_2x-2\right)\left(\log_7x-1\right)=0\)
\(\Leftrightarrow\begin{cases}\log_2x-2=0\\\log_7x-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}\log_2x=2\\\log_7x=1\end{cases}\)
\(\Leftrightarrow\begin{cases}x=4\\x=7\end{cases}\)
Cùng thỏa mãn điều kiện x>0
Vậy phương trình có 2 nghiệm x=4; x=7
a: \(x>3:\dfrac{1}{2}=6\)
b: \(x>-2:\left(-\dfrac{1}{3}\right)=6\)
c: \(x>-4:\dfrac{2}{3}=-6\)
d: \(x< -6:\dfrac{3}{5}=-10\)
d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :
\(\log_2x+\log_3x+\log_4x=\log_{20}x\)
\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)
\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)
\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)
Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)
Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)
Vậy nghiệm duy nhất của phương trình là \(x=1\)
c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :
\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\log_5x=1\)
\(\Leftrightarrow x=5^1=5\) thỏa mãn
Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)
a.
ĐKXĐ: \(x>0\)
\(log_5x>6\Rightarrow x>6^5\Rightarrow x>7776\)
b.
ĐKXĐ: \(x>0\)
\(log_7x< 2\Rightarrow\left\{{}\begin{matrix}x>0\\x< 7^2\end{matrix}\right.\) \(\Rightarrow0< x< 49\)
c.
\(log_2x\le3\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3^2\end{matrix}\right.\) \(\Rightarrow0< x\le9\)
d.
\(log_{\dfrac{1}{3}}x>27\Rightarrow\left\{{}\begin{matrix}x>0\\x< \left(\dfrac{1}{3}\right)^{27}\end{matrix}\right.\)
\(\Rightarrow0< x< \dfrac{1}{3^{27}}\)