Tìm 1 nghiệm của đa thức sau: h(x) = -17x^3+ 8x^2 - 3x + 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)g(x)=0=>11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
=>10(x+1)(x2−x+1)+x2(x+1)+4x(x+1)=0
=>(x+1)[(10(x2−x+1)+x2+4x]=0
=>(x+1)(11x2−6x+10)=0
=>(x+1)[(9x2−2.3x+1)+2x2+9]=0
=>(x+1)[(3x−1)2+2x2+9]=0
=>x+1=0
=>x=-1
Vậy x=-1
a) Thay đa thức này bằng 0, ta được:
f(x) = x^3 - x^2 + x - 1 = 0
=> f(x) = x . x2 - x . x + x - 1 = 0
=> f(x) = x. (x2 - x + x) = 0 + 1 = 1
=> f(x) = x . x2 = 1
=> x = 1 và x2 = 1
=> x = 1
Vậy nghiệm của đa thức là x = 1
Đa thức \(h\left(x\right)=x^3+3x^2+3x+1.\)có nghiệm
\(\Leftrightarrow x^3+3x^2+3x+1=0\)
\(\Leftrightarrow x^2.\left(1+3x\right)+\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right).\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x^2+1=0\left(ktm\right)\end{cases}\Rightarrow x=-\frac{1}{3}}\)
Vậy .........
Ta có: \(h\left(x\right)=0\Leftrightarrow x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(x+1\right)=0\)
\(\Leftrightarrow x^2.\left(x+1\right)+2x.\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1\right).\left(x+1\right)=0\)
\(\Leftrightarrow\left[\left(x^2+x\right)+\left(x+1\right)\right].\left(x+1\right)=0\)
\(\Leftrightarrow\left[x.\left(x+1\right)+\left(x+1\right)\right].\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right).\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy...
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
\(3x^3+4x^2+2x+1=0\)
\(\Leftrightarrow\left(3x^3+x^2+x\right)+\left(3x^2+x+1\right)=0\)
\(\Leftrightarrow x\left(3x^2+x+1\right)+1\left(3x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x+1\right)=0\)
Ta có:\(3x^2+x+1=3\left(x^2+x.\frac{1}{3}+\frac{1}{3}\right)\)
\(=3\left(x^2+2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{1}{3}\right)\)
\(=3\left[\left(x+\frac{1}{6}\right)^2+\frac{11}{36}\right]\ge3.\frac{11}{36}=\frac{11}{12}>0\forall x\)
Do đó x + 1 = 0 tức là x = -1
\(3x^3+3x^2+x^2+x+x+1=0\)
\(3x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)=0\)
\(\left(x+1\right).\left(3x^2+x+1\right)=0\)
+)\(3x^2+x+1=0\Leftrightarrow3.\left(x^2+x+\frac{1}{3}\right)=0\Leftrightarrow3.\left(x+\frac{1}{6}\right)^2+\frac{11}{12}=0\left(loai\right)\)
+) x+1=0 <=> x=-1
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$