Cho tam giác ABC , trung tuyến AM . Phân giác của AMB cắt AB ở D, phân giác của AMC cắt AC ở E
a) C/m DE//BC
b)Gọi I là giao điểm của DE và AM .C/m I là trung điểm của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) VÌ DE//BC
SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE
b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)VÀ\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)
\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Lời giải:
a. Áp dụng tính chất tia phân giác đối với tam giác $AMB, AMC$ thì:
$\frac{AD}{DB}=\frac{AM}{MB}$
$\frac{AE}{EC}=\frac{AM}{MC}$
Mà $MB=MC$ (do $M$ là trung điểm $BC$)
$\Rightarrow \frac{AD}{DB}=\frac{AE}{EC}$
$\Rightarrow DE\parallel BC$ (theo định lý Talet đảo)
b.
Tam giác $ABM$ có $DI\parallel BM$ (do $DE\parallel BC$) nên áp dụng định lý Talet:
$\frac{DI}{BM}=\frac{AI}{AM}$
Tam giác $ACM$ có $IE\parallel CM$ (do $DE\parallel BC$) nên áp dụng định lý Talet:
$\frac{IE}{MC}=\frac{AI}{AM}$
$\Rightarrow \frac{DI}{BM}=\frac{IE}{MC}$
Mà $BM=CM$ nên $DI=IE$
$\Rightarrow I$ là trung điểm $DE$>
Hình vẽ: